【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線.
(1)求的普通方程;
(2)設(shè)為圓上任意一點(diǎn),求的最大值.
【答案】(1)();(2).
【解析】
(1)消元法消去參數(shù)得的普通方程,同理表示的普通方程,最后將其消去整理后可得答案;
(2)由橢圓的參數(shù)方程表示其上任意點(diǎn)的坐標(biāo),由兩點(diǎn)間的距離公式表示,再由三角函數(shù)求的值域確定最大值,最后開(kāi)方即可.
解法一:(1)消去參數(shù)得的普通方程為,
消去參數(shù)得的普通方程為.
聯(lián)立消去得,
所以的普通方程為().
(2)依題意,圓心的坐標(biāo)為,半徑.
由(1)可知,的參數(shù)方程為(為參數(shù),且),
設(shè)(),則
,
當(dāng)時(shí),取得最大值,
又,當(dāng)且僅當(dāng)三點(diǎn)共線,且在線段上時(shí),等號(hào)成立.
所以.
解法二:(1)消去參數(shù)得的普通方程為,
消去參數(shù)得的普通方程為.
由得
故的軌跡的參數(shù)方程為(為參數(shù)),
所以的普通方程為().
(2)同解法一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)x∈[0,π]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;(參考數(shù)據(jù):sin1≈0.84)
(2)當(dāng)a=1時(shí),數(shù)列{an}滿足:0<an<1,=f(an),求證:{an}是遞減數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:,,,,,,后得到如圖的頻率分
布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有學(xué)生1000人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù).
(3)若從樣本中數(shù)學(xué)成績(jī)?cè)?/span>,與,兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,試用列舉法求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的槪率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(13分)
在平面直角坐標(biāo)系xOy中,拋物線上異于坐標(biāo)原點(diǎn)O的兩不同動(dòng)點(diǎn)A、B滿足(如圖所示).
(Ⅰ)求得重心G(即三角形三條中線的交點(diǎn))的軌跡方程;
(Ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一塊邊長(zhǎng)為4的正方形鋁板(如圖),請(qǐng)?jiān)O(shè)計(jì)一種裁剪方法,用虛線標(biāo)示在答題卡本題圖中,通過(guò)該方案裁剪,可焊接做成一個(gè)密封的正四棱柱(底面是正方形且側(cè)棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數(shù)盡可能少,不計(jì)焊接縫的面積),則該四棱柱外接球的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的右頂點(diǎn)為A,左焦點(diǎn)為,過(guò)點(diǎn)A的直線與橢圓C的另一個(gè)交點(diǎn)為B,軸,點(diǎn)在直線上.
(I)求的面積;
(II)過(guò)點(diǎn)S的直線與橢圓C交于P,Q兩點(diǎn),且的面積是的面積的6倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)函數(shù),討論的單調(diào)性;
(2)函數(shù)()的圖象在點(diǎn)處的切線為,證明:有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng),()時(shí),求證:;
(3)若函數(shù)有兩個(gè)極值點(diǎn),,求證:(e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com