把函數(shù)y=sin2x的圖象向右平移
π
6
個單位長度,再向下平移1個單位長度后所得圖象的解析式是
y=sin(2x-
π
3
)-1
y=sin(2x-
π
3
)-1
分析:利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,依次變換即可求得答案.
解答:解:把函數(shù)y=sin2x的圖象上所有的點向右平移
π
6
個單位長度,得到y(tǒng)=sin2(x-
π
6
)=sin(2x-
π
3
)的圖象,
再將y=sin(2x-
π
3
)的圖象上所有的點向下平移1個單位長度后所得函數(shù)圖象的解析式是y=sin(2x-
π
3
)-1.
故答案為:y=sin(2x-
π
3
)-1.
點評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,掌握其變換規(guī)律是解決問題之關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin2x的圖象向左平移
π4
個單位長度,再把所得圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得函數(shù)圖象的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin2x的圖象沿 x軸向左平移
π
6
個單位,縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)y=f(x)圖象,對于函數(shù)y=f(x)有以下四個判斷:
①該函數(shù)的解析式為y=2sin(2x+
π
6
);  
②該函數(shù)圖象關(guān)于點(
π
3
,0
)對稱; 
③該函數(shù)在[0,
π
6
]上是增函數(shù);
④函數(shù)y=f(x)+a在[0,
π
2
]上的最小值為
3
,則a=2
3

其中,正確判斷的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若要得到函數(shù)y=sin(2x-
π
4
)的圖象,可以把函數(shù)y=sin2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=sin(2x+
3
)
的圖象,只需把函數(shù)y=sin2x的圖象上所有的點向左平移
π
3
π
3
個單位長度.

查看答案和解析>>

同步練習(xí)冊答案