已知冪函數(shù)f(x)=xm2-1(m∈Z)的圖象與x軸,y軸都無交點,且關于原點對稱,則函數(shù)f(x)的解析式是
 
分析:冪函數(shù)的圖象與x軸,y軸都無交點,則m2-1<0,再根據(jù)函數(shù)關于原點對稱知m=-1即可
解答:解:∵函數(shù)的圖象與x軸,y軸都無交點,
∴m2-1<0,解得-1<m<1;
∵圖象關于原點對稱,且m∈Z,
∴m=0
∴f(x)=x-1
故答案為:f(x)=x-1
點評:本題考查了冪函數(shù)的單調(diào)性、奇偶性及其應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù)且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)g(x)=2
f(x)
-qx+q-1
,若g(x)>0對任意x∈[-1,1]恒成立,求實數(shù)q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關于y軸對稱,且在區(qū)間(0,+∞)上是減函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=(m2-m-1)xm2-2m-1,滿足f(-x)=f(x),則m=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=xm2-2m-3(m∈Z)的圖象與x軸、y軸無公共點且關于y軸對稱.
(1)求m的值;
(2)畫出函數(shù)y=f(x)的圖象(圖象上要反映出描點的“痕跡”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)為偶函數(shù),且在(0,+∞)上是增函數(shù),求f(x)的解析式;
(2)若f(x)在(0,+∞)上是減函數(shù),求k的取值范圍.

查看答案和解析>>

同步練習冊答案