【題目】已知函數(shù)f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)= .
(1)求x<0時,f(x)的解析式;
(2)畫出函數(shù)f(x)在R上的圖象;
(3)結(jié)合圖象寫出f(x)的值域.
【答案】
(1)解:當x<0時,﹣x>0,
因為f(x)是定義域為R的偶函數(shù),
所以f(x)=f(﹣x)= = .
即當x<0時,f(x)=
(2)解:由(1)知f(x)= ,
(3)解:由函數(shù)的圖象可知,f(x)的值域為[0,1)
【解析】(1)根據(jù)偶函數(shù)的定義求得函數(shù)另一部分的解析式;(2)根據(jù)函數(shù)對于法則進行描點作圖;(3)數(shù)形結(jié)合得到函數(shù)的值域.
【考點精析】本題主要考查了函數(shù)的圖象和函數(shù)的值域的相關(guān)知識點,需要掌握函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應(yīng)的函數(shù)值;求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上為增函數(shù),且滿足f(xy)=f(x)+f(y),f(3)=1.
(1)求f(9),f(27)的值;
(2)解不等式f(x)+f(x﹣8)<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(1)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設(shè)bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在R上是增函數(shù),則下列說法正確的是( )
A.y=﹣f(x)在R上是減函數(shù)
B.y= 在R上是減函數(shù)
C.y=[f(x)]2在R上是增函數(shù)
D.y=af(x)(a為實數(shù))在R上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當n∈N*時, ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列各組函數(shù)是否為相等函數(shù):
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一批數(shù)量很大的產(chǎn)品,其次品率是10%.
(1)連續(xù)抽取兩件產(chǎn)品,求兩件產(chǎn)品均為正品的概率;
(2)對這批產(chǎn)品進行抽查,每次抽出一件,如果抽出次品,則抽查終止,否則繼續(xù)抽查,直到抽出次品,但抽查次數(shù)最多不超過4次,求抽查次數(shù)ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= + 的定義域為( )
A.[﹣1,2)∪(2,+∞)
B.[﹣1,+∞)
C.(﹣∞,2)∪(2,+∞)
D.(﹣1,2)∪(2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com