【題目】某公司準(zhǔn)備將1000萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(萬元)的概率分布列如下表所示:
且的期望;若投資乙項(xiàng)目一年后可獲得的利潤(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為和.若乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整次數(shù)(次數(shù))與的關(guān)系如下表所示:
(1)求的值;
(2)求的分布列;
(3)若,則選擇投資乙項(xiàng)目,求此時(shí)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三棱錐V﹣ABC的底面邊長為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點(diǎn),則四邊形EFGH的面積的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn),G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點(diǎn),E,F(xiàn),G分別是BC,CD和SC的中點(diǎn).求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(1)求證:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1+x﹣2(e為自然對數(shù)的底數(shù)).g(x)=x2﹣ax﹣a+3.若存在實(shí)數(shù)x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com