【題目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函數(shù)f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及對應的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.

【答案】
(1)解:由題意f(x)= +1= sin cos ﹣cos2 +1

= = ,

,∴ ,∴

即x=π時,f(x)min=1.


(2)解: ,即 ,得

,∴ ,∴ ,

=


【解析】(1)利用兩個向量的數(shù)量積公式,三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域求得f(x)的最小值及對應的x的值.(2)由條件求得sin(x﹣ ),再利用同角三角函數(shù)的基本關求得cos(x﹣ )的值,利用兩角和的正弦公式求得sinx=sin[(x﹣ )+ ]的值.
【考點精析】解答此題的關鍵在于理解三角函數(shù)的最值的相關知識,掌握函數(shù),當時,取得最小值為;當時,取得最大值為,則,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個不同元素m,n,則f(m)f(n)=0的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.
(1)設點E為PD的中點,求證:CE∥平面PAB;
(2)線段PD上是否存在一點N,使得直線CN與平面PAC所成的角θ的正弦值為 ?若存在,試確定點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】奇函數(shù)f(x)定義域為(﹣π,0)∪(0,π),其導函數(shù)是f′(x).當0<x<π時,有f′(x)sinx﹣f(x)cosx<0,則關于x的不等式f(x)< f( )sinx的解集為(
A.( ,π)
B.(﹣π,﹣ )∪( ,π)
C.(﹣ ,0)∪(0,
D.(﹣ ,0)∪( ,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,正確的個數(shù)是(
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意的x∈R,x2﹣x<0”;
②若函數(shù)f(x)在(2016,2017)上有零點,則f(2016)f(2017)<0;
③在公差為d的等差數(shù)列{an}中,a1=2,a1 , a3 , a4成等比數(shù)列,則公差d為﹣
④函數(shù)y=sin2x+cos2x在[0, ]上的單調(diào)遞增區(qū)間為[0, ].
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax+2lnx(其中a是實數(shù)).
(1)求f(x)的單調(diào)區(qū)間;
(2)若設2(e+ )<a< ,且f(x)有兩個極值點x1 , x2(x1<x2),求f(x1)﹣f(x2)取值范圍.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1且an+1=2an+1,n∈N* , 設bn=n(an+1),則數(shù)列{bn}的前n項和Sn=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f'(x)是函數(shù)f(x)的導數(shù),f'(x)是函數(shù)f'(x)的導數(shù),若方程f'(x)=0有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)f(x)的拐點.某同學經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有拐點,任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心,
設函數(shù)g(x)=x3﹣3x2+4x+2,利用上述探究結(jié)果
計算: =

查看答案和解析>>

同步練習冊答案