已知tan110°=a,求tan50°時(shí),同學(xué)甲利用兩角差的正切公式求得:tan50°=
a-
3
1+
3
a
;同學(xué)乙利用二倍角公式及誘導(dǎo)公式得tan50°=
1-a2
2a
;根據(jù)上述信息可估算a是介于
 
兩個(gè)連續(xù)整數(shù)之間.
分析:先根據(jù)正切函數(shù)的單調(diào)性判斷a的大致范圍,再由tan50°=
a-
3
1+
3
a
=
1-a2
2a
得到關(guān)系a的等式并且一定有解,再構(gòu)成函數(shù)后根據(jù)函數(shù)零點(diǎn)的判定定理縮小范圍得到答案.
解答:解:∵tan105°<tan110°=a<tam120°,
tan105°=tan(60°+45°)=
3
+1
1-
3
=-2-
3
,tan120°=-
3

∴-4<-2-
3
<a<-
3
<-1
tan50°=
a-
3
1+
3
a
=
1-a2
2a

3
a3+3a2-3
3
a-1
=0有根
令f(a)=
3
a3+3a2-3
3
a-1
,
∵f(-4)f(-3)=(-64
3
+48+12
3
-1)(-18
3
-26)>0
f(-3)f(-2)=(-18
3
-26)(-2
3
+11)<0
∴函數(shù)f(a)=
3
a3+3a2-3
3
a-1
的零點(diǎn)一定在(-3,-2)上,
3
a3+3a2-3
3
a-1
=0的根一定在(-3,-2)上
即a是介于在(-3,-2)上
故答案為:-3和-2
點(diǎn)評(píng):本題主要考查正切函數(shù)的單調(diào)性與函數(shù)零點(diǎn)的判定定理.是一個(gè)綜合題.考查學(xué)生的綜合素養(yǎng)和基本運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan110°=a,求tan50°時(shí),同學(xué)甲利用兩角差的正切公式求得:tan50°=
a-
3
1+
3
a
;同學(xué)乙利用二倍角公式及誘導(dǎo)公式得tan50°=
1-a2
2a
;根據(jù)上述信息可估算a的范圍是(  )
A、-∞,-2-
3
B、-2-
3
,-3
C、(-3,-2)
D、(-2,-
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan110°=a,則tan50°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan110°=a,求tan50°的值(用a表示)甲求得的結(jié)果是
a-
3
1+
3
a
,乙求得的結(jié)果是
1-a2
2a
,對(duì)甲、乙求得的結(jié)果的正確性你的判斷是
甲、乙都對(duì)
甲、乙都對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan110°=a,求tan50°的值(用a表示),甲得到的結(jié)果是,乙得到的結(jié)果是,對(duì)此,你的判斷是(    )

A.甲對(duì),乙不對(duì)   B.甲,乙都對(duì)C.甲不對(duì),乙對(duì)  D.甲,乙都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案