【題目】已知橢圓的右焦點(diǎn)為F,直線lC交于MN兩點(diǎn).

1)若l過(guò)點(diǎn)F,點(diǎn)M,N到直線y2的距離分別為d1d2,且,求l的方程;

2)若點(diǎn)M的坐標(biāo)為(0,1),直線m過(guò)點(diǎn)MC于另一點(diǎn)N′,當(dāng)直線lm的斜率之和為2時(shí),證明:直線NN′過(guò)定點(diǎn).

【答案】1xy10x2y102)證明見(jiàn)解析;

【解析】

1)由若l過(guò)橢圓的右焦點(diǎn)F1,0),設(shè)直線l的方程為xmy+1,聯(lián)立直線與橢圓方程,消去x,得交點(diǎn)MN的縱坐標(biāo)關(guān)系,因?yàn)辄c(diǎn)MN到直線y2的距離分別為d1,d2,則d1+d22yM+2yN4﹣(yM+yN,轉(zhuǎn)化為m的方程,求得m即可.

2)分類(lèi)討論,當(dāng)直線NN'的斜率不存在和存在兩種情況,設(shè)出直線方程,聯(lián)立直線與橢圓的方程,消去一個(gè)變量,由韋達(dá)定理得出N,N'的坐標(biāo)的關(guān)系式,再由當(dāng)直線lm的斜率之和為2,列出方程,求出直線方程,即可得直線NN'過(guò)定點(diǎn)(﹣1,﹣1.

1)易知F1,0),設(shè)直線l的方程為xmy+1,

得(m2+2y2+2my10.yM+yN.

因?yàn)?/span>d1+d22yM+2yN4﹣(yM+yN)=4.

所以m1m2.

l的方程為xy10x2y10.

2)證明:當(dāng)直線NN'的斜率不存在時(shí),設(shè)Nx0,y0),則N'x0,﹣y0.

kl+km2,得2,解得x0=﹣1.

當(dāng)直線NN'的斜率存在時(shí),

設(shè)直線NN'的方程為ykx+tt1),Nx1,y1),N'x2,y2.

得(1+2k2x2+4ktx+2t220.

所以x1+x2,x1x2;

因?yàn)?/span>kl+km2.

所以2k2k2k2.

所以tk1,所以直線NN'的方程為ykx+k1,即y+1kx+1.

故直線NN'過(guò)定點(diǎn)(﹣1,﹣1.

綜上,直線NN'過(guò)定點(diǎn)(﹣1,﹣1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn)是拋物線上一點(diǎn),過(guò)點(diǎn)作拋物線的切線,與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)若直線平分弦,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;

2)若函數(shù)2個(gè)不同的零點(diǎn),

①求實(shí)數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)法定勞動(dòng)年齡是周歲至退休年齡(退休年齡一般指男周歲,女干部身份周歲,女工人周歲).為更好了解我國(guó)勞動(dòng)年齡人口變化情況,有關(guān)專(zhuān)家統(tǒng)計(jì)了年我國(guó)勞動(dòng)年齡人口和周歲人口數(shù)量(含預(yù)測(cè)),得到下表:

其中年勞動(dòng)年齡人口是億人,則下列結(jié)論不正確的是(

A.年勞動(dòng)年齡人口比年減少了萬(wàn)人以上

B.周歲人口數(shù)的平均數(shù)是

C.年,周歲人口數(shù)每年的減少率都小于同年勞動(dòng)人口每年的減少率

D.年這周歲人口數(shù)的方差小于這年勞動(dòng)人口數(shù)的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,,分別為的右頂點(diǎn)和上頂點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)若分別是軸負(fù)半軸,軸負(fù)半軸上的點(diǎn),且四邊形的面積為2,設(shè)直線的交點(diǎn)為,求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值

2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,大學(xué)生M的微信好友中有400位好友參與了“微信運(yùn)動(dòng)”.他隨機(jī)抽取了40位參與“微信運(yùn)動(dòng)”的微信好友(女20人,男20人)在某天的走路步數(shù),經(jīng)統(tǒng)計(jì),其中女性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別:、步,(說(shuō)明:“”表示大于或等于0,小于2000,以下同理),步,步,、步,、步,且、、三種類(lèi)別的人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的柱形圖;男性好友走路的步數(shù)數(shù)據(jù)繪制如圖所示的頻率分布直方圖.

(Ⅰ)若以大學(xué)生抽取的微信好友在該天行走步數(shù)的頻率分布,作為參與“微信運(yùn)動(dòng)”的所有微信好友每天走路步數(shù)的概率分布,試估計(jì)大學(xué)生的參與“微信運(yùn)動(dòng)”的400位微信好友中,每天走路步數(shù)在的人數(shù);

(Ⅱ)若在大學(xué)生該天抽取的步數(shù)在的微信好友中,按男女比例分層抽取6人進(jìn)行身體狀況調(diào)查,然后再?gòu)倪@6位微信好友中隨機(jī)抽取2人進(jìn)行采訪,求其中至少有一位女性微信好友被采訪的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,點(diǎn)E,F分別為ADBP的中點(diǎn),AD3,AP3,PC

1)求證:EF//平面PDC;

2)若∠CDP120°,求二面角ECPD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,證明:對(duì)任意,存在,使得;

2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案