【題目】已知函數(shù)

1)當(dāng)時(shí),求處的切線(xiàn)方程;

2)若函數(shù)上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】分析:(1)當(dāng)時(shí), 。由可求切點(diǎn)的縱坐標(biāo)為

。切線(xiàn)的斜率即為該點(diǎn)出的導(dǎo)函數(shù)值,故求導(dǎo)函數(shù),進(jìn)而求導(dǎo)函數(shù)值,可得斜率。利用直線(xiàn)的點(diǎn)斜式方程可寫(xiě)出處的切線(xiàn)方程為,化簡(jiǎn)可得 。 (2)由函數(shù)上單調(diào)遞減,可得上恒成立。故先求所以上恒成立。利用分離變量法可得上恒成立構(gòu)造函數(shù)。

求其導(dǎo)函數(shù),利用導(dǎo)函數(shù)的正負(fù)判斷函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而求其最小值。

詳解:(1)

處的切線(xiàn)方程為,即

(2)

上單調(diào)遞減

上恒成立即上恒成立記

恒成立,且顯然不是常數(shù)函數(shù).

上單調(diào)遞減

實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)參數(shù)方程為為參數(shù)),當(dāng)時(shí),曲線(xiàn)上對(duì)應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)曲線(xiàn)的公共點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線(xiàn),且點(diǎn)不在直線(xiàn)上.

(1)若點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)為,求點(diǎn)坐標(biāo);

(2)求證:點(diǎn)到直線(xiàn)的距離

(3)當(dāng)點(diǎn)在函數(shù)圖像上時(shí),(2)中的公式變?yōu)?/span>

請(qǐng)參考該公式,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)(包括端點(diǎn)),則所成角的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐中,,平面ABCD,且,點(diǎn)EPD的中點(diǎn).

求證:;

求證:平面AEC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)為正的數(shù)列滿(mǎn)足: .

1)求;

2)證明: );

3)記數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣x3+bx(b為常數(shù)),若方程f(x)=0的根都在區(qū)間[﹣2,2]內(nèi),且函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,則b的取值范圍是( 。
A.[3,+∞)
B.(3,4]
C.[3,4]
D.(﹣∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求滿(mǎn)足下列條件的直線(xiàn)方程.

(1)經(jīng)過(guò)點(diǎn)A(-1,-3),且斜率等于直線(xiàn)3x+8y-1=0斜率的2倍;

(2)過(guò)點(diǎn)M(0,4),且與兩坐標(biāo)軸圍成三角形的周長(zhǎng)為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案