【題目】如圖,四棱錐中,平面,,,.是棱上的一點(diǎn),.

1)求證:平面平面

2)若二面角的余弦值為.多面體的體積為,求.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)由已知求出,在中,結(jié)合余弦定理求出,從而可知,由底面可推出,可證明,進(jìn)而可證明面面垂直.

2)以C為坐標(biāo)原點(diǎn),,所在直線(xiàn)分別為x軸,y,z軸,建立空間直角坐標(biāo)系,設(shè).由(1)知,取平面的法向量為,通過(guò)求出,則可知平面的法向量為,進(jìn)而由二面角的余弦值為可整理得;分別求出四棱錐的體積的體積,則結(jié)合多面體的體積為,進(jìn)而可求出的值.

解:(1)四邊形中,,所以.

中,,,所以,.

則在中,,,

所以,解得:.

,知,即.

因?yàn)?/span>底面,平面,所以.

因?yàn)?/span>,是平面上的兩條相交直線(xiàn),所以.

因?yàn)?/span>平面,所以平面平面.

2)由(1)知:,,兩兩垂直,以C為坐標(biāo)原點(diǎn),,所在直線(xiàn)分別為x軸,yz軸,建立空間直角坐標(biāo)系,則,,.

設(shè),則,.

由(1)知,底面,故取平面的法向量為.

,

設(shè)平面的法向量為,則,即,

,,得.

所以,由條件,知:

整理得:①.四棱錐的體積,

到面距離,所以的體積,

則多面體的體積為②,

由①,②得:,解得:.

因?yàn)?/span>E是棱上的一點(diǎn),所以.從而,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)記,當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍;

(Ⅱ)若,求證:對(duì)任意,上有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年是我國(guó)垃圾分類(lèi)逐步凸顯效果關(guān)鍵的一年.在國(guó)家高度重視,重拳出擊的前提下,高強(qiáng)度、高頻率的宣傳教育能有效縮短我國(guó)生活垃圾分類(lèi)走入世界前列所需的時(shí)間,打好垃圾分類(lèi)這場(chǎng)持久戰(zhàn),全民戰(zhàn)”.某市做了一項(xiàng)調(diào)查,在一所城市中學(xué)和一所縣城中學(xué)隨機(jī)各抽取15名學(xué)生,對(duì)垃圾分類(lèi)知識(shí)進(jìn)行問(wèn)答,滿(mǎn)分為100分,他們所得成績(jī)?nèi)缦拢?/span>

城市中學(xué)學(xué)生成績(jī)分別為:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

縣城中學(xué)學(xué)生成績(jī)分別為:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根據(jù)上述兩組數(shù)據(jù)在圖中完成兩所中學(xué)學(xué)生成績(jī)的莖葉圖,并通過(guò)莖葉圖比較兩所中學(xué)學(xué)生成績(jī)的平均分及分散程度;(不要求計(jì)算出具體值,給出結(jié)論即可)

2)從城市中學(xué)成績(jī)?cè)?/span>80分以上的學(xué)生中抽取4名,記這4名學(xué)生的成績(jī)?cè)?/span>90分以上的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直棱柱中,底面是菱形,,點(diǎn)F,Q是棱,的中點(diǎn),是棱上的點(diǎn),且

1)求證:平面;

2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】超級(jí)細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n)份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

1)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求P關(guān)于k的函數(shù)關(guān)系式

2)若P與抗生素計(jì)量相關(guān),其中,,,)是不同的正實(shí)數(shù),滿(mǎn)足,對(duì)任意的),都有.

i)證明:為等比數(shù)列;

ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,新型冠狀病毒來(lái)勢(shì)兇猛,老百姓一時(shí)間談毒色變,近來(lái),有關(guān)喝白酒可以預(yù)防病毒的說(shuō)法一直在民間流傳,更有人拿出醫(yī)字的繁體字醫(yī)進(jìn)行解讀為:醫(yī)治瘟疫要喝酒,為了調(diào)查喝白酒是否有助于預(yù)防病毒,我們調(diào)查了1000人的喝酒生活習(xí)慣與最終是否得病進(jìn)行了統(tǒng)計(jì),表格如下:

每周喝酒量(兩)

人數(shù)

100

300

450

100

規(guī)定:①每周喝酒量達(dá)到4兩的叫常喝酒人,反之叫不常喝酒人;

②每周喝酒量達(dá)到8兩的叫有酒癮的人.

1)求值,從每周喝酒量達(dá)到6兩的人中按照分層抽樣選出6人,再?gòu)倪@6人中選出2人,求這2人中無(wú)有酒癮的人的概率;

2)請(qǐng)通過(guò)上述表格中的統(tǒng)計(jì)數(shù)據(jù),填寫(xiě)完下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為是否得病與是否常喝酒有關(guān)?并對(duì)民間流傳的說(shuō)法做出你的判斷.

常喝酒

不常喝酒

合計(jì)

得病

不得病

250

650

合計(jì)

參考公式:,其中

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,正確的是(

A.若輸入a,bc的值依次為1,24,則輸出的值為5

B.若輸入a,bc的值依次為2,35,則輸出的值為7

C.若輸入a,b,c的值依次為3,4,5,則輸出的值為15

D.若輸入a,bc的值依次為2,3,4,則輸出的值為10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人經(jīng)營(yíng)淡水池塘養(yǎng)草魚(yú),根據(jù)過(guò)去期的養(yǎng)殖檔案,該池塘的養(yǎng)殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超過(guò)百斤的有期,超過(guò)百斤的有期.根據(jù)統(tǒng)計(jì),該池塘的草魚(yú)重量的增加量(百斤)與使用某種餌料的質(zhì)量(百斤)之間的關(guān)系如圖所示.

1)根據(jù)數(shù)據(jù)可知具有線(xiàn)性相關(guān)關(guān)系,請(qǐng)建立關(guān)于的回歸方程;如果此人設(shè)想使用某種餌料百斤時(shí),草魚(yú)重量的增加量須多于百斤,請(qǐng)根據(jù)回歸方程計(jì)算,確定此方案是否可行?并說(shuō)明理由.

2)養(yǎng)魚(yú)的池塘對(duì)水質(zhì)含氧量與新鮮度要求較高,某商家為該養(yǎng)殖戶(hù)提供收費(fèi)服務(wù),即提供不超過(guò)臺(tái)增氧沖水機(jī),每期養(yǎng)殖使用的沖水機(jī)運(yùn)行臺(tái)數(shù)與魚(yú)塘的魚(yú)重量有如下關(guān)系:

魚(yú)的重量(單位:百斤)

沖水機(jī)只需運(yùn)行臺(tái)數(shù)

若某臺(tái)增氧沖水機(jī)運(yùn)行,則商家每期可獲利千元;若某臺(tái)沖水機(jī)未運(yùn)行,則商家每期虧損千元.視頻率為概率,商家欲使每期沖水機(jī)總利潤(rùn)的均值達(dá)到最大,應(yīng)提供幾臺(tái)增氧沖水機(jī)?

附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(.

(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

同步練習(xí)冊(cè)答案