【題目】已知拋物線經(jīng)過點(diǎn),過作傾斜角互補(bǔ)的兩條不同直線、.
(1)求拋物線的方程及準(zhǔn)線方程;
(2)設(shè)直線、分別交拋物線于、兩點(diǎn)(均不與重合,如圖),記直線的斜率為正數(shù),若以線段為直徑的圓與拋物線的準(zhǔn)線相切,求的值.
【答案】(1)拋物線的方程為,準(zhǔn)線方程為;(2).
【解析】
(1)代入的坐標(biāo),解方程可得,即得到拋物線的方程和準(zhǔn)線方程;
(2)設(shè)直線的方程為,聯(lián)立拋物線的方程,可得的方程,運(yùn)用韋達(dá)定理可得的坐標(biāo),將換為,可得的坐標(biāo),求得的長和中點(diǎn)坐標(biāo),可得所求圓的半徑和圓心,由直線和圓相切的條件,求得.
(1)由于在拋物線上,所以,即,
故所求拋物線的方程為,其準(zhǔn)線方程為;
(2)設(shè)直線的方程為,
將直線的方程與拋物線的方程聯(lián)立,
消去得,
設(shè)點(diǎn),,由韋達(dá)定理得,可得,
所以,點(diǎn)的坐標(biāo)為,
同理可知,點(diǎn)的坐標(biāo)為,
,
線段的中點(diǎn)坐標(biāo)為,
因?yàn)橐?/span>為直徑的圓與準(zhǔn)線相切,,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校命制了一套調(diào)查問卷(試卷滿分均為100分),并對(duì)整個(gè)學(xué)校的學(xué)生進(jìn)行了測試.現(xiàn)從這些學(xué)生的成績中隨機(jī)抽取了50名學(xué)生的成績,按照分成5組,制成了如圖所示的頻率分布直方圖(假定每名學(xué)生的成績均不低于50分).
(1)求頻率分布直方圖中x的值,并估計(jì)所抽取的50名學(xué)生成績的平均數(shù)、中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)用樣本估計(jì)總體,若該校共有2000名學(xué)生,試估計(jì)該校這次測試成績不低于70分的人數(shù);
(3)若利用分層抽樣的方法從樣本中成績不低于70分的學(xué)生中抽取6人,再從這6人中隨機(jī)抽取3人,試求成績?cè)?/span>的學(xué)生至少有1人被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)公司生產(chǎn)某款手機(jī),如果年返修率不超過千分之一,則生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2010-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)量(萬臺(tái)) | 3 | 4 | 5 | 6 | 7 | 7 | 9 | 10 | 12 |
產(chǎn)品年利潤(千萬元) | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.8 | 7.5 | 7.9 | 9.1 |
年返修量(臺(tái)) | 47 | 42 | 48 | 50 | 92 | 83 | 72 | 87 | 90 |
(1)從該公司2010-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(千萬元)關(guān)于年生產(chǎn)量(萬臺(tái))的線性回歸方程(精確到0.01).部分計(jì)算結(jié)果:,,.
附:;線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,過點(diǎn)的直線l與E交于A,B兩點(diǎn).當(dāng)l過點(diǎn)F時(shí),直線l的斜率為,當(dāng)l的斜率不存在時(shí),.
(1)求橢圓E的方程.
(2)以AB為直徑的圓是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月4日,據(jù)“央視財(cái)經(jīng)”微信公眾號(hào)消息,點(diǎn)外賣已成為眾多消費(fèi)者一大常規(guī)的就餐形式,外賣員也成為了一種職業(yè).為調(diào)查某外賣平臺(tái)外賣員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取100名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)得如下頻率分布直方圖:
將上述調(diào)查所得到的頻率視為概率.
(1)求的值,并估計(jì)利用該外賣平臺(tái)點(diǎn)外賣用戶的平均送餐距離;
(2)若該外賣平臺(tái)給外賣員的送餐費(fèi)用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元,超過4千米為遠(yuǎn)距離,每份9元.
(i)記為外賣員送一份外賣的牧入(單位:元),求的分布列和數(shù)學(xué)期望;
(ii)若外賣員一天的收入不低于150元,試?yán)蒙鲜鰯?shù)據(jù)估計(jì)該外賣員一天的送餐距離至少為多少千米?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若曲線與交于,兩點(diǎn),,的中點(diǎn)為,點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是菱形,,與交于點(diǎn),底面,為的中點(diǎn),.
(1)求證: 平面;
(2)求異面直線與所成角的余弦值;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,點(diǎn)M在線段PC上,且PM=2MC,N為AD的中點(diǎn).
(1)求證:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱錐PNBM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知雙曲線的離心率,雙曲線上任意一點(diǎn)到其右焦點(diǎn)的最小距離為.
(1)求雙曲線的方程.
(2)過點(diǎn)是否存在直線,使直線與雙曲線交于兩點(diǎn),且點(diǎn)是線段的中點(diǎn)?若直線存在,請(qǐng)求出直線的方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com