【題目】下列四個命題:
(1)隨機(jī)誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0
(2)殘差平方和越小的模型,擬合的效果越好;
(3)用相關(guān)指數(shù)R2來刻畫回歸的效果時,R2的值越小,說明模型擬合的效果越好;
(4)直線y=bx+a和各點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)的偏差 是該坐標(biāo)平面上所有直線與這些點(diǎn)的偏差中最小的直線.
其中真命題的個數(shù)( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:(1)隨機(jī)誤差e是衡量預(yù)報精確度的一個量,它滿足E(e)=0.正確,
(2)殘差平方和越小的模型,擬合的效果越好,正確
(3)用相關(guān)指數(shù)R2來刻畫回歸效果,R2越大,說明模型的擬合效果越好,所以不正確,
(4)根據(jù)最小二乘法的定義可知,回歸直線是偏差 是該坐標(biāo)平面上所有直線與這些點(diǎn)的偏差中最小的直線,正確
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是橢圓的一個頂點(diǎn), 的長軸是圓的直徑. 是過點(diǎn)且互相垂直的兩條直線,其中交圓于兩點(diǎn)交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)求面積取最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的最小正周期是,將函數(shù)的圖象向左平移個單位長度后所得的函數(shù)為,則函數(shù)的圖象( )
A. 有一個對稱中心 B. 有一條對稱軸
C. 有一個對稱中心 D. 有一條對稱軸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.
(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機(jī)抽取5人,再從這5人中隨機(jī)抽取2人進(jìn)行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),總有f(mn)=f(m)f(n),且f(x)>0,當(dāng)x>1時,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判斷函數(shù)的奇偶性,并證明;
(3)判斷函數(shù)在(0,+∞)上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx+sin2x﹣ .
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f( + ),其中常數(shù)ω>0,|φ|< . (i)當(dāng)ω=4,φ= 時,函數(shù)y=g(x)﹣4λf(x)在[ , ]上的最大值為 ,求λ的值;
(ii)若函數(shù)g(x)的一個單調(diào)減區(qū)間內(nèi)有一個零點(diǎn)﹣ ,且其圖象過點(diǎn)A( ,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時函數(shù)g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1(a>0,且a≠1),當(dāng)x∈(0,+∞)時,f(x)>0,且函數(shù)g(x)=f(x+1)﹣4的圖象不過第二象限,則a的取值范圍是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f( )|對一切x∈R恒成立,則以下結(jié)論正確的是(寫出所有正確結(jié)論的編號). ① ;② ≥ ;
③f(x)的單調(diào)遞增區(qū)間是(kπ+ ,kπ+ )(k∈Z);
④f(x)既不是奇函數(shù)也不是偶函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com