解不等式x2+mx+n>0的解集為{x|x>5或x<-1},求實(shí)數(shù)m,n的值.
考點(diǎn):一元二次不等式的解法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由不等式x2+mx+n>0的解集為{x|x>5或x<-1}可得-1,5是方程x2+mx+n=0的兩個(gè)根,從而利用韋達(dá)定理求解.
解答: 解:∵不等式x2+mx+n>0的解集為{x|x>5或x<-1},
∴-1,5是方程x2+mx+n=0的兩個(gè)根,
∴-1+5=-m,-1×5=n,
解得,m=-4,n=-5.
點(diǎn)評(píng):本題考查了方程與不等式的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列數(shù)列{an}的通項(xiàng)公式:
(1)a1=
1
2
,an+1(1+an)=an;
(2)a1=1,(n+1)
a
2
n+1
-n
a
2
n
+an+1an=0;
(3)a1=1,(an,an+1)在直線y=2x+1上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
x
,試判斷f(x)的奇偶性及在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=( 。
A、-1
B、
4
5
C、-
4
5
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程mx2+(2m+3)x+1-m=0有一個(gè)正根和一個(gè)負(fù)根的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)是(  )
①“在三角形ABC中,若sinA>sinB,則A>B”是真命題;
②函數(shù) f(x)=cos2ax-sin2ax的最小正周期為“π是“a=1”的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④向量
a
=(1,-2)與
b
=(1,m)的夾角為銳角,則m的取值范圍為(-∞,
1
2
).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
3
4
x2sinθ,其中x∈R,θ為參數(shù),且0≤θ≤π.若函數(shù)f(x)的極小值小于-
1
128
,則參數(shù)θ的取值范圍是(  )
A、(
π
6
,π)
B、(
π
6
,
π
2
]
C、[
π
6
,
6
]
D、(
π
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為2,△EBC為正三角形.若向正方形ABCD內(nèi)隨機(jī)投擲一個(gè)質(zhì)點(diǎn),則它落在△EBC內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)棱長(zhǎng)為2的正 方體,被一個(gè)平面截后所得幾何體的三視圖如圖所示,則該截面的面積為(  )
A、
3
10
2
B、4
C、
9
2
D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案