如圖,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在軸上,長軸長是短軸
長的2倍,且經(jīng)過點(diǎn)M. 平行于OM的直線在軸上的截距為并交橢
圓C于A、B兩個不同點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求的取值范圍;
|
(1)(2)(3)見解析
【解析】本試題主要是考查了橢圓方程的求解以及直線與橢圓的位置關(guān)系的總額和運(yùn)用。
(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為
(>>0)
由題意,結(jié)合性質(zhì)得到參數(shù)a,b的值
(2)
設(shè):由
聯(lián)立方程組,然后根據(jù)判別式大于零得到m的范圍。
(3)設(shè),則、為()式的兩根,
設(shè)MA交軸于點(diǎn)P,MB交軸于點(diǎn)Q
MA的方程為:
令,可得P()=
同理得到點(diǎn)Q的坐標(biāo),然后結(jié)合中點(diǎn)公式,得到并證明。
解:(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為
(>>0)
由題意
解得
C的方程為 ………………4分
(2)
設(shè):由
消去得
直線與橢圓有兩個不同的交點(diǎn)
式有兩個不等實(shí)根
則>0
解得<<2 又
的取值范圍為 ………………8分
(3)設(shè),則、為()式的兩根,
設(shè)MA交軸于點(diǎn)P,MB交軸于點(diǎn)Q
MA的方程為:
令,可得P()=
同理可得Q
設(shè)PQ的中點(diǎn)為N,則
由②知
又
MPQ的中線MNPQ
MPQ為等腰三角形 ………………12分
注:其他正確解法請按步驟酌情給分。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:的上、下頂點(diǎn)分別為A、B,點(diǎn)P在橢圓C上且異于點(diǎn)A、B,直線AP、PB與直線l:y=-2分別交于點(diǎn)M、N.
(1)設(shè)直線AP、PB的斜率分別為k1,k2,求證:k1·k2為定值;
(2)求線段MN長的最小值;
(3)當(dāng)點(diǎn)P運(yùn)動時,以MN為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com