精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)若的極大值點,求的值;

2)若上只有一個零點,求的取值范圍.

【答案】(1)(2)

【解析】

(1)首先對函數進行求導,然后通過極大值點所對應的導函數值為0即可求出的值,最后通過檢驗即可得出結果;

(2)首先可以設方程并寫出方程的導函數,然后將上只有一個零點轉化為上只有一個零點,再利用方程的導函數求出方程的最小值,最后對方程的最小值與0之間的關系進行分類討論即可得出結果。

(1),

因為的極大值點,所以,解得

時,,,

,解得,

時,,上單調遞減,又,

所以當時,;當時,

的極大值點;

(2)令,,

上只有一個零點即上只有一個零點,

時,單調遞減;當時,,單調遞增,所以.

(Ⅰ)當,即時,時,上只有一個零點,即上只有一個零點.

(Ⅱ)當,即時,取,

,即時,上各有一個零點,即上有2個零點,不符合題意;

②當時,只有在上有一個零點,即上只有一個零點,

綜上得,當時,上只有一個零點。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側棱PA垂直于底面,E、F分別是AB、PC的中點,PAAD.

求證:(1)CD⊥PD(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若時,討論函數的單調性;

(2)若函數在區(qū)間上恰有2個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解人們對“2019年3月在北京召開的第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議”的關注度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關注度非常髙的人數與年齡的統(tǒng)計結果如右表所示:

年齡

關注度非常高的人數

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計這100人年齡的中位數和平均數;

(Ⅱ)根據以上統(tǒng)計數據填寫下面的列聯表,據此表,能否在犯錯誤的概率不超過的前提下,認為以45歲為分界點的不同人群對“兩會”的關注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計

非常髙

一般

總計

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,點在平面內運動,使得二面角的平面角與二面角的平面角互余,則點的軌跡是( )

A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓經過點,離心率為

(1)求的方程;

(2)過的左焦點且斜率不為的直線相交于兩點,線段的中點為,直線與直線相交于點,若為等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調查結果如下:

0項

1項

2項

3項

4項

5項

5項以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯表,并判斷是否有的把握認為,了解阿基米德與選擇文理科有關?

比較了解

不太了解

合計

理科生

文科生

合計

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數;

(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數,求的分布列和數學期望.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為(為參數),圓的方程為.以原點為極點,軸正半軸為極軸建立極坐標系.

(Ⅰ)求直線及圓的極坐標方程;

(Ⅱ)若直線與圓交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解中學生對交通安全知識的掌握情況,從農村中學和城鎮(zhèn)中學各選取100名同學進行交通安全知識競賽.下圖1和圖2分別是對農村中學和城鎮(zhèn)中學參加競賽的學生成績按,,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識競賽的農村中學和城鎮(zhèn)中學的平均成績;

(Ⅱ)完成下面列聯表,并回答是否有的把握認為“農村中學和城鎮(zhèn)中學的學生對交通安全知識的掌握情況有顯著差異”?

成績小于60分人數

成績不小于60分人數

合計

農村中學

城鎮(zhèn)中學

合計

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

同步練習冊答案