【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.

【答案】
(1)證明:在△PAD卡中PA=PD,O為AD中點,所以PO⊥AD.

又側面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,

所以PO⊥平面ABCD.


(2)解:連接BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,

有OD∥BC且OD=BC,所以四邊形OBCD是平行四邊形,

所以OB∥DC.

由(1)知PO⊥OB,∠PBO為銳角,

所以∠PBO是異面直線PB與CD所成的角.

因為AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB= ,

在Rt△POA中,因為AP= ,AO=1,所以OP=1,

在Rt△PBO中,PB= ,所以cos∠PBO= ,

所以異面直線PB與CD所成的角的余弦值為


(3)解:假設存在點Q,使得它到平面PCD的距離為

設QD=x,則S△DQC= x,由(2)得CD=OB=

在Rt△POC中,PC= ,

所以PC=CD=DP,S△PCD= = ,

由Vp﹣DQC=VQ﹣PCD,得x= ,所以存在點Q滿足題意,此時 =


【解析】(1)根據(jù)線面垂直的判定定理可知,只需證直線PO垂直平面ABCD中的兩條相交直線垂直即可;(2)先通過平移將兩條異面直線平移到同一個起點B,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可;(3)利用Vp﹣DQC=VQ﹣PCD,即可得出結論.
【考點精析】本題主要考查了異面直線及其所成的角和直線與平面垂直的判定的相關知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系;一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中,表示同一集合的是(
A.A={0,1},B={(0,1)}
B.A={2,3},B={3,2}
C.A={x|﹣1<x≤1,x∈N},B={1}
D.
E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題p:函數(shù) 的值域為R;命題q:3x﹣9x<a對一切實數(shù)x恒成立,如果命題“p且q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(1,3),圓C:(x﹣m)2+y2= 過點A(1,﹣ ),F(xiàn)點為拋物線y2=2px(p>0)的焦點,直線PF與圓相切.
(1)求m的值與拋物線的方程;
(2)設點B(2,5),點 Q為拋物線上的一個動點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面為平行四邊形的四棱錐O﹣ABCD中,BC⊥平面OAB,E為OB中點,OA=AD=2AB=2,OB=

(1)求證:平面OAD⊥平面ABCD;
(2)求二面角B﹣AC﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)x、y滿足 ,目標函數(shù)z=x+ay.
(1)當a=﹣2時,求目標函數(shù)z的取值范圍;
(2)若使目標函數(shù)取得最小值的最優(yōu)解有無數(shù)個,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=AD,點M是PD的中點,作ME⊥PC,交PC于點E.

(1)求證:PB∥平面MAC;
(2)求證:PC⊥平面AEM;
(3)求二面角A﹣PC﹣D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ 的圖象經過點A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.

查看答案和解析>>

同步練習冊答案