設(shè)函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.
分析:先把f(x)的解析式變形,用分離常數(shù)法,然后用均值不等式求出最小值,本題是一個古典概型,試驗發(fā)生包含的所有事件是12個,滿足條件的事件是10個,列舉出結(jié)果.
解答:解:x>1,a>0,f(x)=ax+
x-1+1
x-1
=ax+
1
x-1
+1

=a(x-1)+
1
x-1
+1+a
≥2
a
+1+a=(
a
+1)
2
,
當且僅當x=
1
a
+1
>1時,取“=”,∴f(x)min=(
a
+1)2
,
于是f(x)>b恒成立就轉(zhuǎn)化為(
a
+1)2>b
成立.
設(shè)事件A:“f(x)>b恒成立”,則
基本事件總數(shù)為12個,即
(1,2),(1,3),(1,4),(1,5);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5);
事件A包含事件:(1,2),(1,3);
(2,2),(2,3),(2,4),(2,5);
(3,2),(3,3),(3,4),(3,5)共10個
由古典概型得P(A)=
10
12
=
5
6
點評:在使用古典概型的概率公式時,應(yīng)該注意:(1)要判斷該概率模型是不是古典概型;(2)要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù);當解析式中含有分式,且分子分母是齊次的,注意運用分離常數(shù)法來進行式子的變形,在使用均值不等式應(yīng)注意一定,二正,三相等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•楊浦區(qū)一模)(文)設(shè)函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設(shè)函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結(jié)果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案