精英家教網 > 高中數學 > 題目詳情
橢圓+y2=1上一點P到右焦點F的距離為,則P到左準線的距離為________________.
P到左焦點的距離為4-=,到左準線的距離為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

已知不論k為何實數,直線y=kx+b與橢圓+=1總有公共點,則b的取值范圍是(   )
A.(-5,5)B.[-5,5)C.[-5,5]D.[-5,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設橢圓上存在一點P,它到橢圓中心和長軸一個端點的連線互相垂直,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓mx2+ny2=1與直線y=1-x交于M、N兩點,原點與線段MN中點的連線的斜率為,則的值是________________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,F是橢圓的左焦點,P是橢圓上一點,PF⊥x軸,OP∥AB,求橢圓的離心率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓的焦點是F1(-1,0)、F2(1,0),P為橢圓上一點,且|F1F2|是|PF1|與|PF2|的等差中項,則橢圓方程為_________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題






(Ⅰ)設橢圓上的點到兩點距離之和等于,寫出橢圓的方程和焦點坐標;
(Ⅱ)設是(1)中所得橢圓上的動點,求線段的中點的軌跡方程;
(Ⅲ)設點是橢圓上的任意一點,過原點的直線與橢圓相交于,兩點,當直線 , 的斜率都存在,并記為 ,試探究的值是否與點及直線有關,不必證明你的結論。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓x2+2y2=k2(k>0)的焦點坐標是…(    )
A.(0,±k)B.(±k,0)
C.(0,±k)D.(±k,0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知方程表示的曲線是焦點在y軸上且離心率為的橢圓,則m   .

查看答案和解析>>

同步練習冊答案