【題目】已知平面直角坐標(biāo)系中兩個(gè)定點(diǎn),,如果對于常數(shù),在函數(shù),的圖像上有且只有6個(gè)不同的點(diǎn),使得成立,那么的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

畫出函數(shù)y=|x+2|+|x﹣2|﹣4在[﹣4,4]的圖象,討論若P在AB上,設(shè)P(x,﹣2x﹣4);若P在BC上,設(shè)P(x,0);若P在CD上,設(shè)P(x,2x﹣4).求得向量PE,PF的坐標(biāo),求得數(shù)量積,由二次函數(shù)的最值的求法,求得取值范圍,討論交點(diǎn)個(gè)數(shù),即可得到所求范圍.

函數(shù)y=|x+2|+|x﹣2|﹣4

,

(1)若P在AB上,設(shè)P(x,﹣2x﹣4),﹣4≤x≤﹣2.

(3﹣x,6+2x),(﹣3﹣x,6+2x).

x2﹣9+(6+2x)2=5x2+24x+27=

∵x∈[﹣4,﹣2],∴λ≤11.

∴當(dāng)λ時(shí)有一解,當(dāng)λ≤-1時(shí)有兩解;

(2)若P在BC上,設(shè)P(x,0),﹣2<x≤2.

(3﹣x,2),(﹣3﹣x,2).

x2﹣9+4=x2﹣5,

∵﹣2<x≤2,∴﹣5≤λ≤﹣1.

∴當(dāng)λ=﹣5或﹣1時(shí)有一解,當(dāng)﹣5<λ<﹣1時(shí)有兩解;

(3)若P在CD上,設(shè)P(x,2x﹣4),2<x≤4.

(3﹣x,6﹣2x),(﹣3﹣x,6﹣2x),

x2﹣9+(6﹣2x)2=5x2﹣24x+27,

∵2<x≤4,∴λ≤11.

∴當(dāng)λ時(shí)有一解,當(dāng)λ<-1時(shí)有兩解;

綜上,可得有且只有6個(gè)不同的點(diǎn)P的情況是λ<﹣1.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,設(shè),,若對任意,恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出定理:在圓錐曲線中,是拋物線的一條弦,的中點(diǎn),過點(diǎn)且平行于軸的直線與拋物線的交點(diǎn)為.兩點(diǎn)縱坐標(biāo)之差的絕對值,則的面積,試運(yùn)用上述定理求解以下各題:

1)若,所在直線的方程為,的中點(diǎn),過且平行于軸的直線與拋物線的交點(diǎn)為,求;

2)已知是拋物線的一條弦,的中點(diǎn),過點(diǎn)且平行于軸的直線與拋物線的交點(diǎn)為,分別為的中點(diǎn),過且平行于軸的直線與拋物線分別交于點(diǎn),若兩點(diǎn)縱坐標(biāo)之差的絕對值,求;

3)請你在上述問題的啟發(fā)下,設(shè)計(jì)一種方法求拋物線:與弦圍成成的“弓形”的面積,并求出相應(yīng)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對稱;③函數(shù)上單調(diào)遞增;④的圖象向右平移個(gè)單位長度后所得圖象關(guān)于軸對稱.其中所有正確結(jié)論的編號是( )

A.①②④B.①②C.③④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過點(diǎn)和點(diǎn).

1)求函數(shù)的最大值與最小值;

2)將函數(shù)的圖象向左平移個(gè)單位后,得到函數(shù)的圖象;已知點(diǎn),若函數(shù)的圖象上存在點(diǎn),使得,求函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域是上的連續(xù)函數(shù)圖像的兩個(gè)端點(diǎn)為、,是圖像上任意一點(diǎn),過點(diǎn)作垂直于軸的直線交線段于點(diǎn)(點(diǎn)與點(diǎn)可以重合),我們稱的最大值為該函數(shù)的曲徑,下列定義域是上的函數(shù)中,曲徑最小的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)在線段上移動(dòng),有下列判斷:①平面平面;②平面平面;③三棱錐的體積不變;④平面.其中,正確的是______.(把所有正確的判斷的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線由兩個(gè)橢圓和橢圓組成,當(dāng)成等比數(shù)列時(shí),稱曲線貓眼曲線”.

1)若貓眼曲線過點(diǎn),且的公比為,求貓眼曲線的方程;

2)對于題(1)中的求貓眼曲線,任作斜率為且不過原點(diǎn)的直線與該曲線相交,交橢圓所得弦的中點(diǎn)為M,交橢圓所得弦的中點(diǎn)為N,求證:為與無關(guān)的定值;

3)若斜率為的直線為橢圓的切線,且交橢圓于點(diǎn)為橢圓上的任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案