【題目】已知函數,(其中),.
(1)若對定義域內的任意實數x恒成立,求實數a的取值范圍;
(2)若有兩個極值點,,且,求的取值范圍.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數),曲線與軸交于兩點.以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求直線的普通方程及曲線的極坐標方程;
(2)若直線與曲線在第一象限交于點,且線段的中點為,點在曲線上,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電信運營公司為響應國家5G網絡建設政策,擬實行5G網絡流量階梯定價.每人月用流量中不超過(一種流量計算單位)的部分按2元收費;超出的部分按4元收費.從用戶群中隨機調查了10000位用戶,獲得了他們某月的流量使用數據.整理得到如下的頻率分布直方圖:
(1)若為整數,依據本次調查,為使80以上用戶在該月的流量價格為2元,至少定為多少?
(2)假設同組中的每個數據用該組區(qū)間的右端點值代替,當時,試估計用戶該月的人均流量費.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知由n(n∈N*)個正整數構成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對于任意不大于SA的正整數m,均存在集合A的一個子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數列”的充要條件是“”;
(3)若SA=2020,求n的最小值,并指出n取最小值時an的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得福卡(愛國福、富強福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現金紅包.某高校一個社團在年后開學后隨機調查了80位該校在讀大學生,就除夕夜22:18之前是否集齊五福進行了一次調查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數據如下表:
是 | 否 | 合計 | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計 | 65 | 15 | 80 |
(1)根據如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認為“集齊五福與性別有關”?
(2)計算這80位大學生集齊五福的頻率,并據此估算該校10000名在讀大學生中集齊五福的人數;
(3)為了解集齊五福的大學生明年是否愿意繼續(xù)參加集五福活動,該大學的學生會從集齊五福的學生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學的官方網站上,求最后被選取的3次采訪對象中至少有一位男生的概率.
參考公式: .
附表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是邊長為1的正三角形,點P在所在的平面內,且(a為常數),下列結論中正確的是( )
A.當時,滿足條件的點P有且只有一個
B.當時,滿足條件的點P有三個
C.當時,滿足條件的點P有無數個
D.當a為任意正實數時,滿足條件的點總是有限個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,直線與拋物線交于,兩點,分別過,作拋物線的切線,兩切線交于點.
(1)若直線變動時,點始終在以為直徑的圓上,求動點的軌跡方程;
(2)設圓,若直線與圓相切于點(點在線段上).是否存在點使得?若存在,求出點坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《易經》是中國傳統(tǒng)文化中的精髓,如圖是易經八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com