設常數(shù)a∈R,函數(shù)f(x)=|x-1|+|x2-a|,若f(2)=1,則f(1)=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應用
分析:利用f(x)=|x-1|+|x2-a|,f(2)=1,求出a,然后求解f(1)即可.
解答: 解:常數(shù)a∈R,函數(shù)f(x)=|x-1|+|x2-a|,若f(2)=1,
∴1=|2-1|+|22-a|,∴a=4,
函數(shù)f(x)=|x-1|+|x2-4|,
∴f(1)=|1-1|+|12-4|=3,
故答案為:3.
點評:本題考查函數(shù)值的求法,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC是銳角三角形,且sin(B-
π
6
)cos(B-
π
3
)=
1
2

(Ⅰ)求角B的值;
(Ⅱ)求tanAtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,橢圓上的點P與兩個焦點F1,F(xiàn)2構成的三角形的最大面積為1.
(1)求橢圓的方程.
(2)過圓M:x2+y2=r2(r>0)外一點P(x0,y0)作圓M的兩條切線PA,PB(且點分別為A,B),則直線AB的方程為x0x+y0y=r2,類比此結論,過點Q(3,1)作橢圓C的兩條切線QD、QE(切點分別為D、E),寫出直線DE的方程,并予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的程序框圖輸出的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(2x-1)5(x-1)5=
a
 
0
2
+a1x+2a2x2+22a3x3+…+29a10x10,則a0+a1+a2+a3+…+a10=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在函數(shù)f(x)=ex2+aex圖象上點(1,f(1))處切線的斜率為e,則
1
0
f(x)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,若輸入x=2,則該程序運行后輸出的值等于
 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式|2x-1|-|2x+1|≤1的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的T值為(  )
A、55B、30C、91D、100

查看答案和解析>>

同步練習冊答案