已知點(diǎn)與點(diǎn)在直線的兩側(cè),則下列說法: ① ; ② 時(shí),有最小值,無最大值;
③ 恒成立;
④ 當(dāng),, 則的取值范圍為(-;
其中正確的命題是 (填上正確命題的序號(hào)).
③④
【解析】解:第一個(gè)命題中,點(diǎn)P,Q在直線的兩側(cè),因此滿足乘積小于零,因此1錯(cuò)誤。
第二個(gè)命題因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911043026517891/SYS201207091104589682515811_DA.files/image001.png">,所以,此時(shí)沒有定值,因此得不到最值。
第三個(gè)命題中,因?yàn)辄c(diǎn)(a,b)到原點(diǎn)的距離大于M,成立。
第四個(gè)命題中,如果a,b為正數(shù),則利用線段上點(diǎn)的與定點(diǎn)(1,0)構(gòu)成的斜率的范圍可知。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AD |
EB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(滿分14分)設(shè),在平面直角坐標(biāo)系中,已知向量,向量,,動(dòng)點(diǎn)的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知,設(shè)直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知直線經(jīng)過點(diǎn),直線經(jīng)過點(diǎn),且.
(1)求經(jīng)過點(diǎn)B且在兩坐標(biāo)軸上的截距相等的直線的方程;
(2)設(shè)直線與直線的交點(diǎn)為,求外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考全國(guó)卷理科21)(本小題滿分12分)(注意:在試卷上作答無效)
已知拋物線與圓 有一個(gè)公共點(diǎn),且在處兩曲線的切線為同一直線。
(1)求;
(2)設(shè)、是異于且與及都相切的兩條直線,、的交點(diǎn)為,求到的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com