若直線x-2y+a=0與圓(x-2)2+y2=1有公共點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、[-
5
,
5
]
B、(-
5
,
5
)
C、[-2-
5
,-2+
5
]
D、[2-
5
,2+
5
]
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:直線與圓有公共點(diǎn)等價(jià)于圓心到直線的距離不大于半徑.
解答: 解:(x-2)2+y2=1的圓心(2,0),半徑r=1,
圓心(2,0)到直線x-2y+a=0的距離d=
|2+a|
5
,
∵直線x-2y+a=0與圓(x-2)2+y2=1有公共點(diǎn),
|2+a|
5
≤1
,
解得-2-
5
≤a≤-2+
5
,
∴實(shí)數(shù)a的取值范圍是[-2-
5
,-2+
5
].
故選:C.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,是基礎(chǔ)題,解題時(shí)要注意點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a8>0,S16<0,則前16項(xiàng)中正項(xiàng)的個(gè)數(shù)為(  )
A、8B、9C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ax+by=2與圓x2+y2=1有兩個(gè)公共點(diǎn),那么點(diǎn)(
a
2
,
b
2
)
與圓x2+y2=1的位置關(guān)系是( 。
A、點(diǎn)在圓外B、點(diǎn)在圓上
C、點(diǎn)在圓內(nèi)D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x2-2x-3<0},N={x|x≥1},則M∩N=( 。
A、(3,+∞)
B、(1,3)
C、[1,3)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、若a>b,c>d,則ac>bd
B、若
1
a
1
b
,則a<b
C、若b>c,則|a|•b≥|a|•c
D、若a>b,c>d,則a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三名畢業(yè)生參加某公司人力資源部安排的面試,三人依次進(jìn)行,每次一人,其中甲、乙兩人相鄰的概率為(  )
A、
1
3
B、
2
3
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法中錯(cuò)誤的是(  )
A、若“p或q”為假命題,則p、q均為假命題
B、命題“若
a
=-
b
,則|
a
|=|
b
|”的逆命題是“若|
a
|=|
b
|,則
a
=-
b
C、“sinx=
1
2
”的充要條件是“x=
π
6
D、若命題p:“存在實(shí)數(shù)x使x2≥0”,則命題p的否定為“對(duì)于任意x∈R都有x2<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)系數(shù)一元二次方程ax2+bx+c=0(a≠0),試判斷“b2-4ac=0”是“方程ax2+bx+c=0有兩個(gè)相等的實(shí)數(shù)根”的什么條件,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a2=3,a6=11
(1)求通項(xiàng)公式an;
(2)設(shè)bn=2an,求數(shù)列bn的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案