精英家教網(wǎng)如圖,在三棱錐A-BCD中,面ABC⊥面BCD,△ABC是正三角形,∠BCD=90°,∠CBD=30°.
(Ⅰ)求證:AB⊥CD;
(Ⅱ)求二面角D-AB-C的大。
(Ⅲ)求異面直線(xiàn)AC與BD所成角的大。
分析:解法一:
(1)根據(jù)平面與平面垂直的性質(zhì)定理可得:CD⊥面ABC,所以DC⊥AB.
(2)由(Ⅰ)知CD⊥面ABC.二面角的度量關(guān)鍵在于找出它的平面角,構(gòu)造平面角常用的方法就是三垂線(xiàn)法.過(guò)點(diǎn)C作CM⊥AB于M,連接DM.所以∠CMD是二面角D-AB-C的平面角.
(3)求異面直線(xiàn)所成的角,一般有兩種方法,一種是幾何法,其基本解題思路是“異面化共面,認(rèn)定再計(jì)算”,即利用平移法和補(bǔ)形法將兩條異面直線(xiàn)轉(zhuǎn)化到同一個(gè)三角形中,結(jié)合余弦定理來(lái)求.還有一種方法是向量法,即建立空間直角坐標(biāo)系,利用向量的代數(shù)法和幾何法求解.取三邊AB、AD、BC的中點(diǎn)M、N、O,連接AO、MO、NO、MN、OD,則OM∥AC,OM=
1
2
AC
;MN∥BD,MN=
1
2
BD

∴∠OMN是異面直線(xiàn)AC與BD所成的角或其補(bǔ)角.
解法二:
以點(diǎn)O為原點(diǎn),OM所在直線(xiàn)為x軸,OC所在直線(xiàn)為y軸,OA所在直線(xiàn)為z軸,建立空間直角坐標(biāo)系.這種解法的好處就是:(1)解題過(guò)程中較少用到空間幾何中判定線(xiàn)線(xiàn)、面面、線(xiàn)面相對(duì)位置的有關(guān)定理,因?yàn)檫@些可以用向量方法來(lái)解決.(2)即使立體感稍差一些的學(xué)生也可以順利解出,因?yàn)橹恍璁?huà)個(gè)草圖以建立坐標(biāo)系和觀察有關(guān)點(diǎn)的位置即可.
(1)設(shè)CD=1,則O(0,0,0),A(0,0,
3
2
)
B(0,-
3
2
,0)
,C(0,
3
2
,0)
,D(1,
3
2
,0)
.故由
AB
CD
=0
得:
AB
CD
,即AB⊥CD.
(2)由CD⊥平面ABC得,平面ABC的法向量為
CD
=(1,0,0)
,設(shè)平面ABD的法向量為
n
=(x,y,z)
,所以這兩個(gè)法向量的夾角的大。ㄕ担┘礊槎娼荄-AB-C的大小;
(3)因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
BD
=(1,
3
,0),
AC
=(0,
3
2
,-
3
2
)
,故異面直線(xiàn)AC和BD所成角的大小即為
BD
AC
的夾角的大。
解答:解法一:
(Ⅰ)證明:∵面ABC⊥面BCD,∠BCD=90°,且面ABC∩面BCD=BC,
∴CD⊥面ABC.(2分)
又∵AB?面ABC,
∴DC⊥AB.(4分)
(Ⅱ)解:如圖,過(guò)點(diǎn)C作CM⊥AB于M,連接DM.
精英家教網(wǎng)
由(Ⅰ)知CD⊥面ABC.
∴CM是斜線(xiàn)DM在平面ABC內(nèi)的射影,
∴DM⊥AB.(三垂線(xiàn)定理)
∴∠CMD是二面角D-AB-C的平面角.(6分)
設(shè)CD=1,由∠BCD=90°,∠CBD=30°得BC=
3
,BD=2.
∵△ABC是正三角形,
CM=
3
2
•BC=
3
2

tan∠CMD=
CD
CM
=
2
3

∠CMD=arctan
2
3

∴二面角D-AB-C的大小為arctan
2
3
.(9分)
(Ⅲ)解:如圖,取三邊AB、AD、BC的中點(diǎn)M、N、O,
連接AO、MO、NO、MN、OD,
則OM∥AC,OM=
1
2
AC
;MN∥BD,MN=
1
2
BD

∴∠OMN是異面直線(xiàn)AC與BD所成的角或其補(bǔ)角.(11分)
∵△ABC是正三角形,且平面ABC⊥平面BCD,
∴AO⊥面BCD,△AOD是直角三角形,ON=
1
2
AD

又∵CD⊥面ABC,故AD=
DC2+AC2
=2ON=2

在△OMN中,OM=
3
2
,MN=1,ON=1.
cos∠OMN=
1
2
MO
MN
=
3
4

∴異面直線(xiàn)AC和BD所成角為arccos
3
4
.(14分)
解法二:
(Ⅰ)分別取BC、BD的中點(diǎn)O、M,連接AO、OM.
∵△ABC是正三角形,
∴AO⊥BC.
∵面ABC⊥面BCD,且面ABC∩面BCD=BC,
∴AO⊥平面BCD.
∵OM是△BCD的中位線(xiàn),且CD⊥平面ABC,
∴OM⊥平面ABC.
以點(diǎn)O為原點(diǎn),OM所在直線(xiàn)為x軸,OC所
在直線(xiàn)為y軸,OA所在直線(xiàn)為z軸,建立空間
直角坐標(biāo)系.(2分)
精英家教網(wǎng)
設(shè)CD=1,則O(0,0,0),A(0,0,
3
2
)
,B(0,-
3
2
,0)
,C(0,
3
2
,0)
,D(1,
3
2
,0)

AB
=(0,-
3
2
,-
3
2
)
,
CD
=(1,0,0)
.(4分)
AB
CD
=0×1+(-
3
2
)×0+(-
3
2
)×0=0

AB
CD
,即AB⊥CD.(6分)
(Ⅱ)∵CD⊥平面ABC,
∴平面ABC的法向量為
CD
=(1,0,0)
.(7分)
設(shè)平面ABD的法向量為
n
=(x,y,z)
,
AB
=(0,-
3
2
,-
3
2
)
,
AD
=(1,
3
2
,-
3
2
)

n
AB
=0×x+(-
3
2
)×y+(-
3
2
)×z=0

3
y+3z=0
n
AD
=1×x+
3
2
×y+(-
3
2
)×z=0

2x+
3
y-3z=0

∴令y=
3
,則x=-3,z=-1.
n
=(-3,
3
,-1)
.(9分)

cos<
CD
n
>=
CD
n
|
CD
|•|
n
|
=
-3×1+
3
×0+(-1)×0
(-3)2+(
3
)
2
+(-1)2
12+02+02
=-
3
13
13

∵二面角D-AB-C是銳角,
∴二面角D-AB-C的大小為arccos
3
13
13
.(11分)
(Ⅲ)∵
BD
=(1,
3
,0)
,
AC
=(0,
3
2
,-
3
2
)
,
cos<
BD
,
AC
>=
BD
AC
|
BD
|•|
AC
|
=
1×0+
3
×
3
2
+0×(-
3
2
)
12+(
3
)
2
+02
02+(
3
2
)
2
+(-
3
2
)
2
=
3
4

∴異面直線(xiàn)AC和BD所成角為arccos
3
4
.(14分)
點(diǎn)評(píng):本小題主要考查棱錐的結(jié)構(gòu)特征,二面角和線(xiàn)面關(guān)系等基本知識(shí),同時(shí)考查空間想象能力和推理、運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面是正三角形.
(1)求證:AD⊥BC.
(2)求二面角B-AC-D的大。
(3)在直線(xiàn)AC上是否存在一點(diǎn)E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動(dòng)點(diǎn)D在線(xiàn)段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)點(diǎn)D運(yùn)動(dòng)到線(xiàn)段AB的中點(diǎn)時(shí),求二面角D-CO-B的大小;
(Ⅲ)當(dāng)CD與平面AOB所成角最大時(shí),求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點(diǎn)E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點(diǎn)B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
π6
,斜邊AB=4,動(dòng)點(diǎn)D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)當(dāng)D為AB的中點(diǎn)時(shí),求:異面直線(xiàn)AO與CD所成角大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個(gè)側(cè)面是正三角形
(1)求證:AD⊥BC
(2)求二面角B-AC-D的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案