【題目】新個稅法于2019年1月1日進行實施.為了調(diào)查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.

(1)求的值并估計被調(diào)查的員工的滿意程度的中位數(shù);(計算結(jié)果保留兩位小數(shù))

(2)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在的概率.

【答案】(1)見解析(2)

【解析】

1)根據(jù)頻率分布直方圖的面積之和為1得到參數(shù)值,再由中位數(shù)的求法公式得到結(jié)果;(2)依題意,知分數(shù)在的員工抽取了2人,分數(shù)在的員工抽取了6人,列出相應(yīng)的所有情況,以及至少有1人的分數(shù)在的時間個數(shù),根據(jù)古典概型的計算公式得到結(jié)果.

(1)依題意,,所以.

,所以,.

所以中位數(shù)為.

(2)依題意,知分數(shù)在的員工抽取了2人,記為,分數(shù)在的員工抽取了6人,記為1,2,3,4,5,6,

所以從這8人中隨機抽取2人所有的情況為,,,,,,,,,,,,,,,,,,,,,,共28種.

其中滿足條件的為,,,,,,,,,,共13種,

設(shè)“至少有1人的分數(shù)在”的事件為,則.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域為BCDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路不考慮寬.

I求道路BE的長度;

求道路AB,AE長度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題,大概意思如下:在下雨時,用一個圓臺形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列說法:

①函數(shù)ycos(2x)的最小正周期是π;

②終邊在y軸上的角的集合是{α|α,kZ}

③在同一直角坐標(biāo)系中,函數(shù)ysinx的圖象和函數(shù)yx的圖象有三個公共點;

④函數(shù)ysin(x)[0,π]上是增函數(shù).其中,正確的說法是________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率有幫助”的試驗,其中甲班為試驗班(加強語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:

60分及以下

61~70分

71~80分

81~90分

91~100分

甲班(人數(shù))

3

6

12

15

9

乙班(人數(shù))

4

7

16

12

6

現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.

(1)由以上統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有的把握認為“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助;

(2)對甲乙兩班60分及以下的同學(xué)進行定期輔導(dǎo),一個月后從中抽取3人課堂檢測,表示抽取到的甲班學(xué)生人數(shù),求及至少抽到甲班1名同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某四面體的六條棱長分別為3,3,2,2,2,2,則兩條較長棱所在直線所成角的余弦值為( )

A. 0B. C. 0或D. 以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年4月4日召開的國務(wù)院常務(wù)會議明確將進一步推動網(wǎng)絡(luò)提速降費工作落實,推動我國數(shù)字經(jīng)濟發(fā)展和信息消費,今年移動流量資費將再降以上,為響應(yīng)國家政策,某通訊商計劃推出兩款優(yōu)惠流量套餐,詳情如下:

套餐名稱

月套餐費/元

月套餐流量/M

A

30

3000

B

50

6000

這兩款套餐均有以下附加條款:套餐費用月初一次性收取,手機使用流量一旦超出套餐流量,系統(tǒng)就會自動幫用戶充值流量,資費20元;如果又超出充值流量,系統(tǒng)再次自動幫用戶充值流量,資費20元,以此類推.此外,若當(dāng)月流量有剩余,系統(tǒng)將自動清零,不可次月使用.

小張過去50個月的手機月使用流量(單位:M)的頻數(shù)分布表如下:

月使用流量分組

頻數(shù)

4

5

11

16

12

2

根據(jù)小張過去50個月的手機月使用流量情況,回答以下幾個問題:

(1)若小張選擇A套餐,將以上頻率作為概率,求小張在某一個月流量費用超過50元的概率;

(2)小張擬從A或B套餐中選定一款,若以月平均費用作為決策依據(jù),他應(yīng)訂哪一種套餐?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,再把所得曲線上每一點向下平移1個單位得到曲線.以為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)寫出的參數(shù)方程和的直角坐標(biāo)方程;

(2)設(shè)點上,點上,求使取最小值時點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)動點在圓上,動線段的中點的軌跡為,與直線交點為,且直角坐標(biāo)系中,點的橫坐標(biāo)大于點的橫坐標(biāo),求點的直角坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案