【題目】已知二次函數(shù)的最小值為3,且.
求函數(shù)的解析式;
(2)若偶函數(shù)(其中),那么, 在區(qū)間上是否存在零點(diǎn)?請說明理由.
【答案】(1)(2)存在零點(diǎn)
【解析】試題分析:(1)待定系數(shù)法,己知函數(shù)類型為二次函數(shù),又知f(-1)=f(3),所以對稱軸是x=1,且函數(shù)最小值f(1)=3,所設(shè)函數(shù),且,代入f(-1)=11,可解a。
(2)由題意可得,代入,由和根的存在性定理, 在區(qū)間(1,2)上存在零點(diǎn)。
試題解析:(1)因?yàn)?/span>是二次函數(shù),且
所以二次函數(shù)圖像的對稱軸為.
又的最小值為3,所以可設(shè),且
由,得
所以
(2)由(1)可得,
因?yàn)?/span>,
所以在區(qū)間(1,2)上存在零點(diǎn).
【點(diǎn)睛】
(1)對于求己知類型函數(shù)的的解析式,常用待定系數(shù)法,由于二次函數(shù)的表達(dá)式形式比較多,有一般式,兩點(diǎn)式,頂點(diǎn)式,由本題所給條件知道對稱軸與頂點(diǎn)坐標(biāo),所以設(shè)頂點(diǎn)式。
(2)對于判定函數(shù)在否存在零點(diǎn)問題,一般解決此類問題的三步曲是:①先通過觀察函數(shù)圖象再估算出根所在的區(qū)間;②根據(jù)方程根的存在性定理證明根是存在的;③最后根據(jù)函數(shù)的性質(zhì)證明根是唯一的.本題給了區(qū)間,可直接用根的存在性定理。
【題型】解答題
【結(jié)束】
20
【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:
全月應(yīng)納稅所得額 | 稅率 |
不超過1500元的部分 | |
超過1500元至4500元的部分 | |
超過4500元至9000元的部分 |
(1)已知張先生的月工資,薪金所得為10000元,問他當(dāng)月應(yīng)繳納多少個人所得稅?
(2)設(shè)王先生的月工資,薪金所得為,當(dāng)月應(yīng)繳納個人所得稅為元,寫出與的函數(shù)關(guān)系式;
(3)已知王先生一月份應(yīng)繳納個人所得稅為303元,那么他當(dāng)月的工資、薪金所得為多少?
【答案】(1);(2);(3).
【解析】試題分析:(1)10000-3500=6500,納稅部分為6500元,其中1500是3%的稅,3000是10%的稅,2000是20%的稅;稅費(fèi)相加即可;(2)列出與的分段函數(shù)的關(guān)系;(3)根據(jù)(2)的結(jié)果,判斷出,從而代入函數(shù)關(guān)系可得工資的多少.
試題解析:(1)趙先生應(yīng)交稅為 (元).
(2)與的函數(shù)關(guān)系式為:
(3)李先生一月份繳納個人所得稅為303元,故必有,
從而
解得: 元
所以,李先生當(dāng)月的工資、薪金所得為7580元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓E: + =1(a>b>0)的左頂點(diǎn)A(﹣2,0),且點(diǎn)(﹣1, )在橢圓上,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn).過點(diǎn)A作斜率為k(k>0)的直線交橢圓E于另一點(diǎn)B,直線BF2交橢圓E于點(diǎn)C.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若△CF1F2為等腰三角形,求點(diǎn)B的坐標(biāo);
(3)若F1C⊥AB,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用 (基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強(qiáng)險(xiǎn)第二年價格計(jì)算公式具體如下:交強(qiáng)險(xiǎn)最終保費(fèi)基準(zhǔn)保費(fèi)(浮動比率).發(fā)生交通事故的次數(shù)越多,出險(xiǎn)次數(shù)的就越多,費(fèi)率也就越髙,具體浮動情況如下表:
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險(xiǎn)次數(shù),得到下面的柱狀圖:
已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費(fèi)用為元.
(1)記為事件“”,求的估計(jì)值;
(2)求的平均估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)已知函數(shù)f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集為{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+ , 且a+b+c=m,求證: + + ≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為 、 ,短軸兩個端點(diǎn)為 、 ,且四邊形 是邊長為2的正方形.
(1)求橢圓的方程;
(2)若 、 分別是橢圓長軸的左、右端點(diǎn),動點(diǎn) 滿足 ,連接 ,交橢圓于點(diǎn) .證明: 為定值.
(3)在(2)的條件下,試問 軸上是否存異于點(diǎn) 的定點(diǎn) ,使得以 為直徑的圓恒過直線 、 的交點(diǎn),若存在,求出點(diǎn) 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域?yàn)?/span>
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點(diǎn)睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實(shí)數(shù)的取值范圍;
(3)若,且對任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量與平行.
(1)求A;
(2)若,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時,方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查中小學(xué)課外使用互聯(lián)網(wǎng)的情況,教育部向華東、華北、華南和西部地區(qū)60所中小學(xué)發(fā)出問卷份, 名學(xué)生參加了問卷調(diào)查,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(如圖).
(1)要從這名中小學(xué)中用分層抽樣的方法抽取名中小學(xué)生進(jìn)一步調(diào)查,則在(小時)時間段內(nèi)應(yīng)抽出的人數(shù)是多少?
(2)若希望的中小學(xué)生每天使用互聯(lián)網(wǎng)時間不少于(小時),請估計(jì)的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com