【題目】已知F1、F2為雙曲線C: (a>0,b>0)的左、右焦點(diǎn),點(diǎn)P為雙曲線C右支上一點(diǎn),直線PF1與圓x2+y2=a2相切,且|PF2|=|F1F2|,則雙曲線C的離心率為(
A.
B.
C.
D.2

【答案】C
【解析】解:設(shè)直線PF1與圓x2+y2=a2相切于點(diǎn)M, 則|OM|=a,OM⊥PF1 ,
取PF1的中點(diǎn)N,連接NF2
由于|PF2|=|F1F2|=2c,則NF2⊥PF1 , |NP|=|NF1|,
由|NF2|=2|OM|=2a,
則|NP|= =2b=2b,
即有|PF1|=4b,
由雙曲線的定義可得|PF1|﹣|PF2|=2a,
即4b﹣2c=2a,即2b=c+a,
4b2=(c+a)2 , 即4(c2﹣a2)=(c+a)2
4(c﹣a)=c+a,即3c=5a,
則e= =
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù) 圖象上的點(diǎn) 向右平移m(m>0)個(gè)單位長(zhǎng)度得到點(diǎn)P',若P'位于函數(shù)y=cos2x的圖象上,則(
A. ,m的最小值為
B. ,m的最小值為
C. ,m的最小值為
D. ,m的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=(lnx)ln(1﹣x).
(1)求函數(shù)y=f(x)的圖象在( ,f( ))處的切線方程;
(2)求函數(shù)y=f′(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤,斬末一尺,重二斤,問(wèn)次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,長(zhǎng)五尺,一頭粗,一頭細(xì),在粗的一端截下1尺,重4斤;在細(xì)的一端截下1尺,重2斤;問(wèn)依次每一尺各重多少斤?”根據(jù)上題的已知條件,若金箠由粗到細(xì)是均勻變化的,問(wèn)第二尺與第四尺的重量之和為(
A.6 斤
B.9 斤
C.9.5斤
D.12 斤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為 的正方形ABCD中,E、O分別為 AD、BC的中點(diǎn),沿 EO將矩形ABOE折起使得∠BOC=120°,如圖2所示,點(diǎn)G 在BC上,BG=2GC,M、N分別為AB、EG中點(diǎn).
(Ⅰ)求證:MN∥平面OBC;
(Ⅱ)求二面角 G﹣ME﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)經(jīng)過(guò)點(diǎn)( ,1),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M、N是橢圓C上的點(diǎn),直線OM與ON(O為坐標(biāo)原點(diǎn))的斜率之積為﹣ ,若動(dòng)點(diǎn)P滿足 ,試探究,是否存在兩個(gè)定點(diǎn)F1 , F2 , 使得|PF1|+|PF2|為定值?若存在,求F1 , F2的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= sin2x+sinxcosx﹣
(1)求f(x)的單調(diào)增區(qū)間;
(2)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若A為銳角且f(A)= ,b+c=4,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C: (θ為參數(shù)),直線l1:kx﹣y+k=0,l2:cosθ﹣2sinθ=
(Ⅰ)寫(xiě)出曲線C和直線l2的普通方程;
(Ⅱ)l1與C交于不同兩點(diǎn)M,N,MN的中點(diǎn)為P,l1與l2的交點(diǎn)為Q,l1恒過(guò)點(diǎn)A,求|AP||AQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 + =1(a>b>0)的上頂點(diǎn)為A,左右頂點(diǎn)為B,C,右焦點(diǎn)為F,|AF|=3,且△ABC的周長(zhǎng)為14.
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)M(4,0)的直線l與橢圓相交于不同兩點(diǎn)P,Q,點(diǎn)N在線段PQ上,設(shè)λ= = ,試判斷點(diǎn)N是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案