函數(shù)y=
x2+2x-3
的單調(diào)增區(qū)間是( 。
A、[1,+∞)
B、(-∞,-1]
C、(-∞,-3]
D、[-3,-1]
考點(diǎn):復(fù)合函數(shù)的單調(diào)性,函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)單調(diào)性和二次函數(shù)單調(diào)性的性質(zhì)即可得到結(jié)論.
解答: 解:由t=x2+2x-3≥0得x≥1或x≤-3,即函數(shù)的定義域?yàn)閧x|x≥1或x≤-3},
即當(dāng)x≥1時(shí),函數(shù)t=x2+2x-3單調(diào)遞增,
當(dāng)x≤-3時(shí),函數(shù)t=x2+2x-3單調(diào)遞減,
∵y=
t
在定義域上單調(diào)遞增,
∴由復(fù)合函數(shù)的單調(diào)性的性質(zhì)可知,函數(shù)y=
x2+2x-3
的單調(diào)增區(qū)間是[1,+∞),
故選:A.
點(diǎn)評(píng):本題主要考查復(fù)合函數(shù)單調(diào)性和單調(diào)區(qū)間的求法,要求熟練掌握復(fù)合函數(shù)單調(diào)性的判斷方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分形幾何學(xué)是數(shù)學(xué)家伯努瓦•曼得爾布羅在20世紀(jì)70年代創(chuàng)立的一門新的數(shù)學(xué)學(xué)科,它的創(chuàng)立為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個(gè)樹(shù)形圖:

已知第三行有白圈5個(gè),黑圈4個(gè),我們采用“坐標(biāo)”來(lái)表示各行中的白圈、黑圈的個(gè)數(shù).比如第一行記為(1,0),第二行記為(2,1),第三行記為(5,4),則第四的白圈與黑圈的“坐標(biāo)”為
 
.照此規(guī)律,第n行中的白圈、黑圈的“坐標(biāo)”為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=90°.過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|
MN
|
|
AB
|
的最大值為( 。
A、
2
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
x
x+1
在點(diǎn)(0,0)處的切線方程為( 。
A、y=-x
B、y=
1
2
x
C、y=x
D、y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,試根據(jù)圖中所標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的表面積是( 。
A、18+
3
B、18+2
3
C、24+2
3
D、24+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P是橢圓
x2
169
+
y2
144
=1
上一點(diǎn),F(xiàn)1、F2是橢圓的焦點(diǎn),若|PF1|等于4,則|PF2|等于( 。
A、22B、21C、20D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其中俯視圖是個(gè)半圓,則該幾何體的體積為(  )
A、
3
3
π
B、π
C、
3
6
π
D、
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為4的正方體ABCD-A1B1C1D1中,E、F分別是AD,A1D1的中點(diǎn),長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在線段EF上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面A1B1C1D1上運(yùn)動(dòng),則線段MN的中點(diǎn)P在二面角A-A1D1-B1內(nèi)運(yùn)動(dòng)所形成的軌跡(曲面)的面積為( 。
A、4π
B、π
C、
2
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
6
≤β<
π
4
,3sin2α-2sin2β=2sinα,試求sin2β-
1
2
sinα
的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案