【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學(xué)生每周平均體育運動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
附:
【答案】(1)90;(2);(3)有的把握認(rèn)為“該校學(xué)生的每周平均課外閱讀時間與性別有關(guān)”
【解析】
(1)根據(jù)頻率分布直方圖進(jìn)行求解即可.
(2)由頻率分布直方圖先求出對應(yīng)的頻率,即可估計對應(yīng)的概率.
(3)利用獨立性檢驗進(jìn)行求解即可
(1)30090,所以應(yīng)收集90位女生的樣本數(shù)據(jù).
(2)由頻率分布直方圖得1﹣2×(0.100+0.025)=0.75,
所以該校學(xué)生每周平均體育運動時間超過4小時的概率的估計值為0.75.
(3)由(2)知,300位學(xué)生中有300×0.75=225人的每周平均體育運動時間超過4小時,75人的每周平均體育運動時間不超過4小時,又因為樣本數(shù)據(jù)中有210份是關(guān)于男生的,90份是關(guān)于女生的,所以每周平均體育運動時間與性別列聯(lián)表如下:每周平均體育運動時間與性別列聯(lián)表
男生 | 女生 | 總計 | |
每周平均體育運動時間 不超過4小時 | 45 | 30 | 75 |
每周平均體育運動時間 超過4小時 | 165 | 60 | 225 |
總計 | 210 | 90 | 300 |
結(jié)合列聯(lián)表可算得K24.762>3.841
所以,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運動時間與性別有關(guān)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計 | |
駕齡不超過1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計 | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某地一天從時的溫度變化曲線近似滿足函數(shù).
(1)求該地區(qū)這一段時間內(nèi)溫度的最大溫差.
(2)若有一種細(xì)菌在到之間可以生存,則在這段時間內(nèi),該細(xì)菌最多能存活多長時間?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的( )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為和,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院一天派出醫(yī)生下鄉(xiāng)醫(yī)療,派出醫(yī)生人數(shù)及其概率如下:
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出醫(yī)生至多2人的概率;
(2)派出醫(yī)生至少2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的“ 猜想”是指:任取一個自然數(shù),如果它是偶數(shù),我們就把它除以,如果它是奇數(shù)我們就把它乘再加上,在這樣一個變換下,我們就得到了一個新的自然數(shù)。如果反復(fù)使用這個變換,我們就會得到一串自然數(shù),猜想就是:反復(fù)進(jìn)行上述運算后,最后結(jié)果為,現(xiàn)根據(jù)此猜想設(shè)計一個程序框圖如圖所示,執(zhí)行該程序框圖輸入的,則輸出值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
在平面直角坐標(biāo)系中,點到點的距離之和為4.
(1)試求點A的M的方程.
(2)若斜率為的直線l與軌跡M交于C,D兩點,為軌跡M上不同于C,D的一點,記直線PC的斜率為,直線PD的斜率為,試問是否為定值.若是,求出該定值;若不同,請說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記.
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)設(shè),數(shù)列的前項和為,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com