【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以直角坐標(biāo)系的點(diǎn)為極點(diǎn),為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為.
(1)求直線的傾斜角;
(2)若直線與曲線交于,兩點(diǎn),求的長度.
【答案】(1);(2)
【解析】
(1)利用消參法將直線的參數(shù)方程化為普通方程,再利用斜率公式即可求出直線的傾斜角;
(2)利用互化公式,,,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,再根據(jù)點(diǎn)到直線的距離公式,求出圓心到直線的距離,最后再運(yùn)用直線與圓的弦長公式,即可求得結(jié)果.
解:(1)設(shè)直線的傾斜角為,
∵直線的參數(shù)方程為(t為參數(shù)),所以,
∴,∵,
∴,∴直線的傾斜角為,
(2)由曲線的極坐標(biāo)方程為,得,
∵,,,
∴曲線的普通方程為,
圓心為,半徑,
則圓心到直線的距離,
∴,
∴的長度為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時(shí)間,票房收入就超過了38億元,創(chuàng)造了中國動畫電影的神話.小明和同學(xué)相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學(xué)大約在7:40至8:30之間到達(dá)影院,且他們到達(dá)影院的時(shí)間是隨機(jī)的,那么他們到達(dá)后等待的時(shí)間不超過10分鐘的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示在菱形ABCD中,,,點(diǎn)E是AD的中點(diǎn),將沿BE折起,使得平面平面BCDE得到如圖2所示的四棱錐,點(diǎn)F為AC的中點(diǎn).在圖2中
(Ⅰ)證明:平面ABE;
(Ⅱ)求點(diǎn)A到平面BEF的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知當(dāng),函數(shù),且,若的圖像與的圖像在第二象限有公共點(diǎn),且在該點(diǎn)處的切線相同,當(dāng)實(shí)數(shù)變化時(shí),實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐P-ABC的平面展開圖中,四邊形ABCD為邊長等于的正方形,△ABE和△BCF均為正三角形,在三棱錐P-ABC中:
(1)證明:平面PAC⊥平面ABC;
(2)若點(diǎn)M為棱PA上一點(diǎn)且,求二面角P-BC-M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機(jī)抽取100名網(wǎng)民進(jìn)行調(diào)查,其中男性、女性人數(shù)分別為45和55.下面是根據(jù)調(diào)查結(jié)果繪制的網(wǎng)民日均瀏覽購物網(wǎng)站時(shí)間的頻率分布直方圖,將日均瀏覽購物網(wǎng)站時(shí)間不低于40分鐘的網(wǎng)民稱為“網(wǎng)購達(dá)人”,已知“網(wǎng)購達(dá)人”中女性有10人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為是否為“網(wǎng)購達(dá)人”與性別有關(guān);
非網(wǎng)購達(dá)人 | 網(wǎng)購達(dá)人 | 總計(jì) | |
男 | |||
女 | 10 | ||
總計(jì) |
(2)將上述調(diào)査所得到的頻率視為概率,現(xiàn)在從該地的網(wǎng)民中隨機(jī)抽取3名,記被抽取的3名網(wǎng)民中的“網(wǎng)購達(dá)人”的人數(shù)為X,求X的分布列、數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),且離心率為,過其右焦點(diǎn)F的直線交橢圓C于M,N兩點(diǎn),交y軸于E點(diǎn).若,.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com