函數(shù)f(x)=(3-2a)x+b在R上是減函數(shù),則有(  )
A、a≤
3
2
B、a≥
3
2
C、a<
3
2
D、a>
3
2
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=(3-2a)x+b在R上是減函數(shù),可得3-2a<0,由此求得a的范圍.
解答: 解:由函數(shù)f(x)=(3-2a)x+b在R上是減函數(shù),
∴3-2a<0,解得a>
3
2
,
故選:D.
點(diǎn)評:本題主要考查一次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•bx+c(b>0,b≠1),其定義域?yàn)閇0,+∞),值域?yàn)閇-2,3).那么函數(shù)f(x)的一個(gè)解析式可以是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的標(biāo)準(zhǔn)方程為(x-3)2+(y+1)2=9,則此圓的圓心坐標(biāo)和半徑分別為(  )
A、(3,-1),3
B、(3,1),3
C、(-3,1),9
D、(-3,-1),3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>1},B={x|x2-2x<0},則A∩B=(  )
A、{x|x>0}
B、{x|x>1}
C、{x|1<x<2}
D、{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2弧度的圓心角所對弧長為4cm,則圓心角所夾的扇形面積為( 。
A、2πcm2
B、4πcm2
C、2cm2
D、4cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f′(x)是函數(shù)f(x)=
x
1-x
的導(dǎo)數(shù),則
f′(2)
f(2)
的值是( 。
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+(m+2)x+1=0無正根,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某商品銷售價(jià)為a元時(shí),對應(yīng)的月銷售量為b個(gè),如果該商品的銷售價(jià)上漲x%,則商品的月銷售量將減少
1
2
x%.求當(dāng)x為何值時(shí),能使當(dāng)月銷售此商品所獲得的總收入最大,并求出最大收入.(每月按30天計(jì))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(x+2)=2x+3,求f(3)的值;
(2)已知f(x)為二次函數(shù),若f(0)=0,且f(x+1)=f(x)+x+1,求f(x)的表達(dá)式;
(3)已知f(x)+2f(
1
x
)=3x
,求f(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案