【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復發(fā)的情況進行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為).
(1)補充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有的把握認為甲、乙兩套治療方案對患者白血病復發(fā)有影響;
(2)從復發(fā)的患者中抽取3人進行分析,求其中接受“乙方案”治療的人數(shù)的數(shù)學期望.
附:
,其中.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線,動圓P與圓M相外切,且與直線l相切.設動圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點A,B是E上的兩個動點,O為坐標原點,且,求證:直線AB恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,且函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(2)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點是線段上的動點,則下列說法錯誤的是( )
A. 當點移動至中點時,直線與平面所成角最大且為
B. 無論點在上怎么移動,都有
C. 當點移動至中點時,才有與相交于一點,記為點,且
D. 無論點在上怎么移動,異面直線與所成角都不可能是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面與平面平行的充分條件可以是( )
A.內(nèi)有無窮多條直線都與平行
B.直線,,且直線a不在內(nèi),也不在內(nèi)
C.直線,直線,且,
D.內(nèi)的任何一條直線都與平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案①:規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案②:規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為,,,,,,七組,整理得到如圖所示的頻率分布直方圖.
(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;
(2)若騎手甲、乙選擇了日工資方案①,丙、丁選擇了日工資方案②.現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案①的概率;
(3)若從人均日收入的角度考慮,請你利用所學的統(tǒng)計學知識為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,.
(1)當時,解不等式;
(2)若函數(shù)在區(qū)間內(nèi)恰有一個零點,求的取值范圍;
(3)設,當函數(shù)的定義域為時,值域為,求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com