【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

1)寫出的普通方程和的直角坐標方程;

2)若相交于兩點,求的面積.

【答案】1的普通方程為,的直角坐標方程為;(2.

【解析】

1)由曲線的參數(shù)方程能求出的普通方程,曲線的極坐標方程轉化為,由此能求出的直角坐標方程;

2)求出原點到直線的距離為,化的參數(shù)方程為普通方程,可得表示圓心為,半徑的圓,求出到直線的距離,再由垂徑定理求得,代入三角形面積公式求解.

1)消去參數(shù)可得的普通方程為,

,得,

又因為,

所以的直角坐標方程為;

2)如圖:

原點到直線的距離,

曲線的標準方程為,表示圓心為,半徑的圓,

到直線的距離,

,

所以,

綜上,的面積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在一次田徑比賽中,35名運動員的成績(單位:分鐘)的莖葉圖如圖所示。

若將運動員按成績由好到差編為135號,再用系統(tǒng)抽樣方法從中抽取5人,則其中成績在區(qū)間上的運動員人數(shù)為

A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有甲、乙兩套設備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設備的生產(chǎn)質(zhì)量情況,隨機從兩套設備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.1是甲套設備的樣本的頻數(shù)分布表,圖1是乙套設備的樣本的頻率分布直方圖.

1:甲套設備的樣本的頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

1

5

18

19

6

1

1:乙套設備的樣本的頻率分布直方圖

1)根據(jù)表1和圖1,通過計算合格率對兩套設備的優(yōu)劣進行比較;

2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設備的選擇有關.

甲套設備

乙套設備

合計

合格品

不合格品

合計

附:

0.15

0.10

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面平面,的中點,.

(1)求二面角的大。

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種大型醫(yī)療檢查機器生產(chǎn)商,對一次性購買2臺機器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費維修2次,超過2次每次收取維修費2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費維修4次,超過4次每次收取維修費1000元.某醫(yī)院準備一次性購買2臺這種機器,F(xiàn)需決策在購買機器時應購買哪種延保方案,為此搜集并整理了50臺這種機器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

維修次數(shù)

0

1

2

3

臺數(shù)

5

10

20

15

以這50臺機器維修次數(shù)的頻率代替1臺機器維修次數(shù)發(fā)生的概率,記X表示這2臺機器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

(1)求X的分布列;

(2)以所需延保金及維修費用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若曲線在點處的切線與直線垂直,求的單調(diào)區(qū)間;

2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;

3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐A-BCDE,其中AC=BC=2,ACBCCD//BECD=2BECD⊥平面ABC,FAD的中點.

1)求證:EF//平面ABC;

2)設MAB的中點,若DM與平面ABC所成角的正切值為,求平面ACD與平面ADE夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知橢圓)的半焦距為,原點到經(jīng)過兩點的直線的距離為

)求橢圓的離心率;

)如圖,是圓的一條直徑,若橢圓經(jīng)過兩點,求橢圓的方程.

查看答案和解析>>

同步練習冊答案