14.己知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow$=(1,cosθ),θ∈(0,$\frac{π}{2}$)
(1)若$\overrightarrow{a}$$•\overrightarrow$=$\frac{7}{3}$,求sinθ+cosθ的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求sin(2θ+$\frac{π}{3}$)的值.

分析 (1)運用向量的數(shù)量積的坐標表示,結(jié)合同角三角函數(shù)的基本關系式,化簡計算即可得到所求值;
(2)運用向量共線坐標表示,求得tanθ=2,再由二倍角公式和兩角和的正弦公式,計算即可得到所求值.

解答 解:(1)由向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow$=(1,cosθ),θ∈(0,$\frac{π}{2}$),
可得$\overrightarrow{a}$$•\overrightarrow$=2+sinθcosθ=$\frac{7}{3}$,
即sinθcosθ=$\frac{7}{3}$-2=$\frac{1}{3}$,
則sinθ+cosθ=$\sqrt{(sinθ+cosθ)^{2}}$=$\sqrt{si{n}^{2}θ+co{s}^{2}θ+2sinθcosθ}$
=$\sqrt{1+\frac{2}{3}}$=$\frac{\sqrt{15}}{3}$;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,則2cosθ=sinθ,即tanθ=2,
sin2θ=2sinθcosθ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{1+ta{n}^{2}θ}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$,
cos2θ=cos2θ-sin2θ=$\frac{co{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+si{n}^{2}θ}$=$\frac{1-ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{1-4}{1+4}$=-$\frac{3}{5}$,
則sin(2θ+$\frac{π}{3}$)=sin2θcos$\frac{π}{3}$+cos2θsin$\frac{π}{3}$
=$\frac{4}{5}$×$\frac{1}{2}$+(-$\frac{3}{5}$)×$\frac{\sqrt{3}}{2}$=$\frac{4-3\sqrt{3}}{10}$.

點評 本題考查三角函數(shù)的求值,注意運用三角函數(shù)的恒等變換公式,同時考查向量的數(shù)量積和共線條件,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.(1)計算:($\root{3}{3}$×$\sqrt{2}$)6+($\sqrt{3\sqrt{3}}$)${\;}^{\frac{4}{3}}$-$\root{4}{2}$×80.25-(-2019)0
(2)已知0<x<1,且x+x-1=3,求x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$,橢圓上一點P滿足|PF1|•|PF2|的最大值是2,O為坐標原點.
(I)求橢圓C1的方程;
(Ⅱ)若直線l與圓x2+y2=b2只有一個交點,并與橢圓C1交于不同的兩點A、B,當$\frac{2}{3}$≤$\overrightarrow{OA}$•$\overrightarrow{OB}$≤$\frac{3}{4}$時,求△AOB面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N*),且a1=2,bn=log3(an+1).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.曲線$y=-\sqrt{1-{x^2}}$與曲線y+|ax|=0(a∈R)的交點有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對邊,$\overrightarrow{m}$=($\sqrt{3}$a,c)與$\overrightarrow{n}$=(1+cosA,sinC)為共線向量.
(1)求角A;
(2)若3bc=16-a2,且S△ABC=$\sqrt{3}$,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.一半徑為4米的水輪如圖所示,水輪圓心O距離水面2米,已知水輪每60秒逆時針轉(zhuǎn)動5圈,如果當水輪上點P從水中浮現(xiàn)時(圖象P0點)開始計算時間,且點P距離水面的高度f(t)(米)與時間t(秒)滿足函數(shù):f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)求函數(shù)f(t)的解析式;
(2)點P第二次到達最高點要多長時間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合A是函數(shù)$f(x)={log_{\frac{1}{2}}}({x-1})$的定義域,集合B是函數(shù)g(x)=2x,x∈[-1,2]的值域.
(1)求集合A;
(2)求集合B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在空間直角坐標中,點P(-1,-2,-3)到平面xOz的距離是( 。
A.1B.2C.3D.$\sqrt{14}$

查看答案和解析>>

同步練習冊答案