已知向量,,x∈[0,π],若、的夾角為θ,則θ的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sinωx,0)
,
n
=(cosωx,-sinωx)
(ω>0),在函數(shù)f(x)=
m
•(
m
+
n
)+t
的圖象中,對(duì)稱(chēng)中心到對(duì)稱(chēng)軸的最小距離為
π
4
,且當(dāng)x∈[0,
π
3
]
時(shí),f(x)的最大值為
3
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(
3
sinωx,0),
n
=(cosωx,-sinωx)(ω>0)
,在函數(shù)f(x)=
m
•(
m
+
n
)+t
的圖象上,對(duì)稱(chēng)中心到對(duì)稱(chēng)軸的最小距離為
π
4
,且當(dāng)x∈[0,
π
3
]
時(shí)f(x)的最小值為
3
2

(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若對(duì)任意x1,x2∈[0,
π
3
]都有|f(x1)-f(x2)|<m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012年黑龍江省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:選擇題

已知向量,其中x>0.若,則x的值為(  )

A.8           B.4           C.2               D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量數(shù)學(xué)公式=(數(shù)學(xué)公式cos x,0),數(shù)學(xué)公式=(0,sin x),記函數(shù)f(x)=(數(shù)學(xué)公式+數(shù)學(xué)公式2+數(shù)學(xué)公式sin 2x,
(1)求函數(shù)f(x)的最小值及取最小值x的集合;
(2)若將函數(shù)f(x)的圖象按向量數(shù)學(xué)公式平移后,得到的圖象關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱(chēng)且在[0,數(shù)學(xué)公式]上單調(diào)遞減,求長(zhǎng)度最小的數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量
m
=(
3
sinωx,0),
n
=(cosωx,-sinωx)(ω>0)
,在函數(shù)f(x)=
m
•(
m
+
n
)+t
的圖象上,對(duì)稱(chēng)中心到對(duì)稱(chēng)軸的最小距離為
π
4
,且當(dāng)x∈[0,
π
3
]
時(shí)f(x)的最小值為
3
2

(1)求f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)若對(duì)任意x1,x2∈[0,
π
3
]都有|f(x1)-f(x2)|<m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案