已知方程
表示焦點在y軸上的橢圓,則k的取值范圍是( )
試題分析:根據(jù)雙曲線方程的特點可知,方程
表示焦點在y軸上的雙曲線,則說明而來原式變形為
,故答案選C.
點評:對于雙曲線的方程的特點是等式左邊是平方差,右邊為1,同時分母中為正數(shù),因此可知要使得焦點在x軸上,則必須保證
的系數(shù)為正,因此可知不等式表示的范圍得到結(jié)論,屬于基礎(chǔ)題。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知正方形ABCD 對角線AC所在直線方程為
.拋物線
過B,D兩點
(1)若正方形中心M為(2,2)時,求點N(b,c)的軌跡方程。
(2)求證方程
的兩實根
,
滿足
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A
、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知F
1,F(xiàn)
2為橢圓
的兩個焦點,過F
1的直線交橢圓于A,B兩點,若|F
2A|+|F
2B|=12,則|AB|=
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
,
是拋物線
(
為正常數(shù))上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且
(Ⅰ)求證:直線AB過拋物線C的焦點;
(Ⅱ)是否存在直線AB,使得
若存在,求出直線AB的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為
。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線
l與C相交于A,B兩點,且
,求直線
l的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)點P(x,y)在橢圓
上,求
的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若雙曲線
的一條漸近線方程為
,則此雙曲線的離心率是____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)F
1、F
2為橢圓
的左、右焦點,過橢圓中心任作一直線與橢圓交于
P、Q 兩點,當四邊形
PF1QF2面積最大時,
的值等于( )
查看答案和解析>>