【題目】甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數(shù)莖葉圖如下:
(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);
(2)通過計算,比較甲乙兩人的罰球水平.
【答案】(1);(2)甲乙兩人的罰球水平相當,但乙比甲穩(wěn)定.
【解析】試題(1)將甲、乙的命中個數(shù)從小到大排列,根據(jù)平均數(shù)的計算公式和眾數(shù)的概念,即可求解甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);(2)利用公式求解甲乙的平均數(shù)與方差,即可比較甲乙兩人的罰球水平.
試題解析:(1)將甲的命中個數(shù)從小到大排列為5,8,9,11,16,17,中位數(shù)為,
將乙的命中個數(shù)從小到大排列為6,9,10,12,12,17,眾數(shù)為12.
(2)記甲、乙命中個數(shù)的平均數(shù)分別為,,
,
,
∵,,
∴甲乙兩人的罰球水平相當,但乙比甲穩(wěn)定.
科目:高中數(shù)學 來源: 題型:
【題目】選修:坐標系與參數(shù)方程選講.
在平面直角坐標系中,曲線(為參數(shù),實數(shù)),曲線
(為參數(shù),實數(shù)). 在以為極點, 軸的正半軸為極軸的極坐標系中,射線與交于兩點,與交于兩點. 當時, ;當時, .
(1)求的值; (2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,x R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個零點,求a的取值范圍;
(Ⅲ)當a=1時,設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,圓.
(1)若直線過點且到圓心的距離為,求直線的方程;
(2)設(shè)過點的直線與圓交于、兩點(的斜率為負),當時,求以線段為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下是我們常見的空間幾何體.
(1) (2) (3) (4) (5) (6) (7) (8) (9)(10)
(11)
(1)以上幾何體中哪些是棱柱?
(2)一個幾何體為棱柱的充要條件是什么?
(3)如何求以上幾何體的表面積?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點F為拋物線的焦點,點A在拋物線E上,
點B在x軸上,且是邊長為2的等邊三角形。
(1)求拋物線E的方程;
(2)設(shè)C是拋物線E上的動點,直線為拋物線E在點C處的切線,求點B到直線距離的最小值,并求此時點C的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:上一點與兩焦點構(gòu)成的三角形的周長為,離心率為 .
(1)求橢圓的方程;
(2)設(shè)橢圓C的右頂點和上頂點分別為A、B,斜率為的直線l與橢圓C交于P、Q兩點(點P在第一象限).若四邊形APBQ面積為,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com