已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長軸長及離心率;
(Ⅱ)已知M為橢圓C的左頂點(diǎn),直線l過(1,0)且與橢圓C交于A,B兩點(diǎn)(不與M重合).求證:∠AMB>90°(或者證明△AMB是鈍角三角形)
考點(diǎn):橢圓的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)由橢圓C的方程,確定橢圓的幾何量,即可求橢圓C的長軸長及離心率;
(Ⅱ)分類討論,設(shè)直線l的方程,與橢圓方程聯(lián)立,利用韋達(dá)定理及向量的數(shù)量積,可得
MA
MB
<0恒成立,∠AMB為鈍角,即可得到結(jié)論.
解答: (Ⅰ)解:橢圓C的方程為
x2
4
+
y2
16
=1,a=4,b=2,c=2
3
,
∴橢圓C的長軸長為8,離心率e=
c
a
=
3
2
;
(Ⅱ)證明:(1)當(dāng)直線l的斜率不存在時(shí),AA(1,2
3
),B(1,-2
3
),
MA
MB
=-3<0.
(2)當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x-1),
設(shè)A(x1,y1),B(x2,y2),
由直線l的方程代入橢圓方程消去y得:(4+k2)x2-2k2x+k2-16=0.
則x1+x2=
2k2
4+k2
,x1x2=
k2-16
4+k2

MA
MB
=(x1+2)(x2+2)+k(x1-1)k(x2-1)=
-3k2
4+k2
<0
綜上,
MA
MB
<0恒成立,∠AMB為鈍角.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí),解題的關(guān)鍵是直線與橢圓聯(lián)立,利用韋達(dá)定理進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用特征性質(zhì)描述法表示:由北京一個(gè)城市構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知雙曲線
x2
a2
-
y2
9
=1(a>0)的一條漸近線方程為3x+2y=0,點(diǎn)A為雙曲線C的右頂點(diǎn),圓O的方程為x2+y2=1.
(1)求a的值;
(2)點(diǎn)M為平面內(nèi)一動(dòng)點(diǎn),過M引圓O的切線MN(N為切點(diǎn)),若
MN
MA
=
2
,求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)(0,1)且離心率為
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)若斜率為1的直線l交C于A,B兩點(diǎn),且|AB|=
8
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y),當(dāng)x>0時(shí),f(x)>0,試判斷f(x)在(0,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an},a1=2,a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD⊥CD,AB∥CD,AD=CD=
1
2
AB=a,平面ACEF⊥平面ABCD,四邊形ACEF是矩形,AE=a,點(diǎn)M在線段EF上.
(1)求證:AM⊥BC;
(2)若
EM
=
1
3
EF
,求二面角B-AM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
10
0
1
2
,則矩陣A的逆矩陣為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a≠0,f(x)=x3+ax2-a2x-1,g(x)=ax2-x-1,若y=f(x)與g(x)的圖象有三個(gè)不同交點(diǎn),則a的范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案