某市為了考核甲、乙兩部門的工作情況,隨機訪問了50位市民,根據(jù)這50位市民對兩部門的評分(評分越高表明市民的評價越高)繪制的莖葉圖如圖:

(Ⅰ)分別估計該市的市民對甲、乙兩部門評分的中位數(shù);
(Ⅱ)分別估計該市的市民對甲、乙兩部門的評分高于90的概率;
(Ⅲ)根據(jù)莖葉圖分析該市的市民對甲、乙兩部門的評價.
考點:古典概型及其概率計算公式,莖葉圖,眾數(shù)、中位數(shù)、平均數(shù)
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)莖葉圖的知識,中位數(shù)是指中間的一個或兩個的平均數(shù),首先要排序,然后再找,
(Ⅱ)利用樣本來估計總體,只要求出樣本的概率就可以了.
(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)果和莖葉圖,合理的評價,恰當?shù)拿枋黾纯桑?/div>
解答: 解:(Ⅰ)由莖葉圖知,50位市民對甲部門的評分有小到大順序,排在排在第25,26位的是75,75,故樣本的中位數(shù)是75,所以該市的市民對甲部門的評分的中位數(shù)的估計值是75.
50位市民對乙部門的評分有小到大順序,排在排在第25,26位的是66,68,故樣本的中位數(shù)是
66+68
2
=67,所以該市的市民對乙部門的評分的中位數(shù)的估計值是67.
(Ⅱ)由莖葉圖知,50位市民對甲、乙部門的評分高于90的比率分別為
5
50
=0.1,
8
50
=0.16
,
故該市的市民對甲、乙兩部門的評分高于90的概率得估計值分別為0.1,0.16,
(Ⅲ)由莖葉圖知,市民對甲部門的評分的中位數(shù)高于乙部門的評分的中位數(shù),而且由莖葉圖可以大致看出對甲部門的評分標準差要小于乙部門的標準差,說明該市市民對甲部門的評價較高、評價較為一致,對乙部門的評價較低、評價差異較大.
點評:本題主要考查了莖葉圖的知識,以及中位數(shù),用樣本來估計總體的統(tǒng)計知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-2,2]內(nèi)任取一個元素x0,若拋物線y=x2在x=x0處的切線的傾斜角為α,則α∈[
π
3
3
]的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱柱ABC-A1B1C1的底面邊長為2,側(cè)棱長為
3
,D為BC中點,則三棱錐A-B1DC1的體積為(  )
A、3
B、
3
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正數(shù),且a+b=1,則
1
a
+
4
b
( 。
A、有最小值8
B、有最小值9
C、有最大值8
D、有最大值9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,已知3acosC=2ccosA,tanA=
1
3
,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=aexlnx+
bex-1
x
,曲線y=f(x)在點(1,f(1))處得切線方程為y=e(x-1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校隨機抽取100名學(xué)生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
排號分組頻數(shù)
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計100
(Ⅰ)從該校隨機選取一名學(xué)生,試估計這名學(xué)生該周課外閱讀時間少于12小時的概率;
(Ⅱ)求頻率分布直方圖中的a,b的值;
(Ⅲ)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的100名學(xué)生該周課外閱讀時間的平均數(shù)在第幾組(只需寫結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π為圓周率,e=2.71828…為自然對數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)=
lnx
x
的單調(diào)區(qū)間;
(Ⅱ)求e3,3e,eπ,πe,3π,π3這6個數(shù)中的最大數(shù)和最小數(shù);
(Ⅲ)將e3,3e,eπ,πe,3π,π3這6個數(shù)按從小到大的順序排列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2+3x|,x∈R,若方程f(x)-a|x-1|=0恰有4個互異的實數(shù)根,則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案