精英家教網 > 高中數學 > 題目詳情

定義:對于函數,若存在非零常數,使函數對于定義域內的任意實數,都有,則稱函數是廣義周期函數,其中稱為函數的廣義周期,稱為周距.
(1)證明函數是以2為廣義周期的廣義周期函數,并求出它的相應周距的值;
(2)試求一個函數,使為常數,)為廣義周期函數,并求出它的一個廣義周期和周距
(3)設函數是周期的周期函數,當函數上的值域為時,求上的最大值和最小值.

(1)2;(2),;(3)

解析試題分析:本題是一個新定義概念問題,解決問題的關鍵是按照新定義把問題轉化為我們熟悉的問題,(1)就是找到使為常數,考慮到,因此取,則有,符合題設,即得;(2)在(1)中求解時,可以想到一次函數就是廣義周期函數,因此取,再考慮到正弦函數的周期性,取,代入新定義式子計算可得;(3)首先,函數應該是廣義周期函數,由新定義可求得一個廣義周期是,周距,由于,可見在區(qū)間上取得最小值,在上取得最大值,而當時,由上面結論可得,最小值為,當時,,從而最大值為
試題解析:(1),
,(非零常數)
所以函數是廣義周期函數,它的周距為2.  (4分)
(2)設,則


(非零常數) 所以是廣義周期函數,且.      ( 9分)
(3),
所以是廣義周期函數,且 .             (10分)
滿足
得:
,
知道在區(qū)間上的最小值是上獲得的,而,所以上的最小值為.       ( 13分)
得:
,
知道在區(qū)間上的最大值是上獲得的,
,所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的奇偶性;
(2)若函數上為減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數的圖象切x軸于點(2,0),求a、b的值;
(2)設函數的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數的圖象上任意不同的兩點的連線的斜率小于l,求證

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義:若上為增函數,則稱為“k次比增函數”,其中. 已知其中e為自然對數的底數.
(1)若是“1次比增函數”,求實數a的取值范圍;
(2)當時,求函數上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是實數,函數).
(1)求證:函數不是奇函數;
(2)當時,求滿足的取值范圍;
(3)求函數的值域(用表示).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(1)若,求證:函數上的奇函數;
(2)若函數在區(qū)間上沒有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,不等式的解集為.
(1)求的值;
(2)若對一切實數恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為.
(1)求函數上的最小值;
(2)對,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設函數f(x)=.
(1)求a、b的值及函數f(x)的解析式;
(2)若不等式f(2x)-k·2x≥0在x∈[-1,1]時有解,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案