在△ABC中,角A,B,C所對的邊分別為a,b,c,且
m
=(
3
b-c,cosC),
n
=(a,cosA),
m
n
,則tanA的值等于
 
考點:平行向量與共線向量
專題:三角函數(shù)的求值,平面向量及應(yīng)用
分析:根據(jù)
m
n
和正弦定理,求出cosA的值,再利用同角的三角函數(shù)關(guān)系,求出tanA.
解答: 解:∵
m
=(
3
b-c,cosC),
n
=(a,cosA),且
m
n
,
∴(
3
b-c)cosA-acosC=0;
由正弦定理得,
3
sinB-sinC)cosA-sinAcosC=0,
3
sinBcosA=sinCcosA+sinAcosC,
3
sinBcosA=sin(A+C)=sinB;
∴cosA=
3
3
,
∴sinA=
6
3

tanA=
3
6
=
2
2

故答案為:
2
2
點評:本題考查了平面向量的應(yīng)用問題,也考查了三角函數(shù)求值的問題,是計算題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosx(sinx+cosx)+m,(m∈R),在區(qū)間[0,
π
4
]內(nèi)最大值為
2
,
(1)求實數(shù)m的值;
(2)在△ABC中,三內(nèi)角A、B、C所對邊分別為a,b,c,且f(
3
4
B)=1,a+c=2
,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若奇函數(shù)f(x)在(-∞,0)內(nèi)是減函數(shù),且f(-2)=0,則不等式x•f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條平行于x軸的直線l1:y=m+1,和l2:y=
1
m
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A(x1,y1),B(x2,y2),l2與函數(shù)y=|log2x|的圖象從左至右相交于C(x3,y3),D(x4,y4),記a=|x1-x3|,b=|x2-x4|,當(dāng)m變化時,
b
a
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-ax+1)•xb,x∈[1,+∞).
(1)若a=4,b=0時,求f(x)在區(qū)間[0,3]上的值域;
(2)若a=-1,b=-1時,判斷并證明f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面的語句是命題的是(  )
A、指數(shù)函數(shù)是增函數(shù)嗎?
B、空集是任何集合的子集
C、x>2
D、畫一個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
16
-
y2
9
=1上P點到左焦點的距離是6,則P到右焦點的距離是( 。
A、12B、14C、16D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)當(dāng)x>0時,f(x)=x2-x-1,求x<0時f(x)的解析式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時有f(x)=
4x
x+4

(1)判斷函數(shù)f(x)在[0,+∞)上的單調(diào)性,并用定義證明;
(2)求函數(shù)f(x)的解析式(寫成分段函數(shù)的形式).

查看答案和解析>>

同步練習(xí)冊答案