已知、都是定義在R上的函數(shù),,,,,則關(guān)于的方程有兩個不同實根的概率為( )
A.B.C.D.
B

試題分析:令,則,所以是減函數(shù),
.又,所以.由.又,由幾何概型概率公式得:.選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線
(1)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實數(shù),使得同時成立,求實數(shù)的取值范圍;
(3)已知點(diǎn)為曲線上的動點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某連鎖分店銷售某種商品,每件商品的成本為元,并且每件商品需向總店交元的管理費(fèi),預(yù)計當(dāng)每件商品的售價為元時,一年的銷售量為萬件.
(1)求該連鎖分店一年的利潤(萬元)與每件商品的售價的函數(shù)關(guān)系式;
(2)當(dāng)每件商品的售價為多少元時,該連鎖分店一年的利潤最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),為常數(shù))
(1)當(dāng)恒成立,求實數(shù)的取值范圍;
(2)若函數(shù)有對稱中心為A(1,0),求證:函數(shù)的切線在切點(diǎn)處穿過圖象的充要條件是恰為函數(shù)在點(diǎn)A處的切線.(直線穿過曲線是指:直線與曲線有交點(diǎn),且在交點(diǎn)左右附近曲線在直線異側(cè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在上連續(xù),定義:,.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.
(Ⅰ)若,試寫出,的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對應(yīng)的;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)上的2階收縮函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的最大值為0,其中。
(1)求的值;
(2)若對任意,有成立,求實數(shù)的最大值;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)圖象如圖所示,若為銳角三角形,則一定成立的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為常數(shù),函數(shù)有兩個極值點(diǎn),則(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案