【題目】已知點(diǎn),點(diǎn)在軸上,點(diǎn)在軸上,且.當(dāng)點(diǎn)在軸上運(yùn)動時,點(diǎn)的軌跡記為曲.
(Ⅰ)求曲線的軌跡方程;
(Ⅱ)過曲線上一點(diǎn),作圓的切線,交曲線于兩點(diǎn),若直線垂直于直線,求的面積.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)設(shè)點(diǎn),由表示出的坐標(biāo),根據(jù)及平面向量數(shù)量積的坐標(biāo)運(yùn)算,即可確定曲線的軌跡方程;
(Ⅱ)根據(jù)題意可知直線的斜率必定存在時,設(shè)表示出及直線的方程,結(jié)合與圓相切及點(diǎn)到直線距離公式,可得方程,再由韋達(dá)定理表示出直線的斜率公式,結(jié)合即可確定的值,進(jìn)而求得的面積.
(Ⅰ)設(shè)點(diǎn),則,
所以,
因?yàn)?/span>,所以,
即,
所以曲線的軌跡方程為,.
(Ⅱ)由題知直線的斜率不為0,當(dāng)直線的斜率不存在時,由拋物線的特征可知此時不垂直,故不合題意;
當(dāng)直線的斜率存在時,記,
則,
所以直線的方程為,
即,由直線和圓相切,
得,化簡可得,
同理可得,
所以是方程的兩根,
故,
所以直線的斜率,
又,由得,
即,
所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓M:經(jīng)過圓N:與x軸的兩個交點(diǎn)和與y軸正半軸的交點(diǎn).
(1)求橢圓M的方程;
(2)若點(diǎn)P為橢圓M上的動點(diǎn),點(diǎn)Q為圓N上的動點(diǎn),求線段PQ長的最大值;
(3)若不平行于坐標(biāo)軸的直線交橢圓M于A、B兩點(diǎn),交圓N于C、D兩點(diǎn),且滿足求證:線段AB的中點(diǎn)E在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與交于、兩點(diǎn),點(diǎn)在橢圓上,是坐標(biāo)原點(diǎn),若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個端點(diǎn)與長軸的一個端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時,求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極值;
(2)證明:時,
(3)若函數(shù)有且只有三個不同的零點(diǎn),分別記為,設(shè)且的最大值是,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個不同的極值點(diǎn).
(1)求的取值范圍.
(2)求的極大值與極小值之和的取值范圍.
(3)若,則是否有最小值?若有,求出最小值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐P﹣ABCD的底面邊長為2,側(cè)棱長為2,過點(diǎn)A作一個與側(cè)棱PC垂直的平面α,則平面α被此正四棱錐所截的截面面積為_____,平面α將此正四棱錐分成的兩部分體積的比值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com