某幾何體的三視圖如圖所示,主視圖和側(cè)視圖為全等的直角梯形,俯視圖為直角三角形.則該幾何體的表面積為( 。
A、6+12
2
B、16+12
2
C、6+12
3
D、16+12
3
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為三棱臺(tái),且棱臺(tái)的里面?zhèn)让媾c底面垂直,其中一條側(cè)棱與底面垂直,其直觀圖如圖,可得三個(gè)側(cè)面都為直角梯形,底面為等腰直角三角形,
求得CC1,A1B1,AB的長(zhǎng),把數(shù)據(jù)代入棱臺(tái)的側(cè)面積公式與底面面積公式計(jì)算.
解答: 解:由三視圖知幾何體為三棱臺(tái),且棱臺(tái)的里面?zhèn)让媾c底面垂直,其中一條側(cè)棱與底面垂直,其直觀圖如圖:

AA1⊥AB,AA1⊥AC,又BC⊥AC,∴BC⊥CC1,
∴CC1=2
2
,A1B1=2
2
,AB=4
2

∴棱臺(tái)的側(cè)面積為
2+4
2
×2+
2+4
2
×2
2
+
2
2
+4
2
2
×2=6+12
2

兩底面都是等腰直角三角形,其面積為
1
2
×2×2+
1
2
×4×4=10.
∴幾何體的表面積S=10+6+12
2
=16+12
2

故選B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,解題的關(guān)鍵是判斷幾何體的形狀及求相關(guān)幾何量的數(shù)據(jù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一長(zhǎng)度為100米的防洪提的斜坡,它的傾斜角為45°,現(xiàn)在要是堤高不變,坡面傾斜角改為30°,則坡底要伸長(zhǎng)
 
米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為四邊形ABCD所在平面外一點(diǎn),且向量
OA
,
OB
OC
,
OD
滿足
OA
+
OC
=
OB
+
OD
,則四邊形的形狀為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a2=4,a3+a7=20,則a8=( 。
A、8B、12C、16D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A滿足:對(duì)任意x∈A,都有
1
x
∈A
,就稱(chēng)A是和諧集合.則在集合M={-1,0,
1
5
1
3
,
1
2
,1,2,3,4,5,6}的所有非空子集中,和諧集合有( 。﹤(gè).
A、255B、127
C、63D、31

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,m,n為兩條不重合的直線,給出下列四個(gè)命題:
①若α⊥γ,β∥γ,則α⊥β;
②若α∥γ,β∥γ,則α∥β;
③若m∥α,n∥α,則m∥n;
④若α⊥γ,β⊥γ,α∩β=m,則m⊥γ;
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且(a2+b2)sin(A-B)=(a2+b2)sin(A+B),則△ABC是( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,E是DC的中點(diǎn),AE交BD于點(diǎn)M,|
AB
|=4,|
AD
|=2,
AB
、
AD
的夾角為
π
3

(1)若
AM
AC
BD
,求λ+3μ的值;
(2)當(dāng)點(diǎn)P在平行四邊形ABCD的邊BC和CD上運(yùn)動(dòng)時(shí),求
AP
AE
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn)P(
3
,3).若函數(shù)f(x)=2sinα•cos2ωx+4cosα•sinωx•cosωx的圖象關(guān)于直線x=
π
2
對(duì)稱(chēng),其中ω為常數(shù),且ω∈(0,1).
(1)求f(x)的表達(dá)式及其最小正周期;
(2)若將y=f(x)圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
1
6
,再將所得圖象向右平移
π
3
個(gè)單位,縱坐標(biāo)不變,得到y(tǒng)=h(x)的圖象,設(shè)函數(shù)g(x)對(duì)任意x∈R,有g(shù)(x+
π
2
)=g(x),且當(dāng)x∈[0,
π
2
]時(shí),g(x)=
1
2
-h(x),求函數(shù)g(x)在[-π,0]上的解析式.
(3)設(shè)(2)中所求得函數(shù)g(x),可使不等式g2(x)+4g(x)-a≥2x對(duì)任意x∈[-
π
12
,0]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案