已知等差數(shù)列的前項和為,公差,且.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列是首項為1,公比為的等比數(shù)列,求數(shù)列的前n項和.

(1) (2) 時,時,

解析試題分析:(1)將已知條件中的均用表示,即可解得的值。再根據(jù)等差的通項公式求其通項公式即可。(2)根據(jù)等比數(shù)列的通項公式可得,即可得(注意對公比是否為1進行討論)。當時,,根據(jù)等差數(shù)列前項和公式求;當時,的通項公式等于等差乘等比的形式,故應(yīng)用錯位相減法求其前n項和。
解:(1)因為公差,且
所以.                       2分
所以.                                                  4分
所以等差數(shù)列的通項公式為.                        5分
(2)因為數(shù)列是首項為1,公比為的等比數(shù)列,
所以.                                                 6分
所以.                                     7分
(1)當時,.                                           8分
所以.                           9分
(2)當時,
因為    ①    9分
      ②   10分
①-②得
                11分

                                    12分
                                   13分
考點:1等差數(shù)列的通項公式、前項和公式;2錯位相減法求數(shù)列前項和。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an;
(2)設(shè)Sn為{an}的前n項和,求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2012•廣東)設(shè)數(shù)列{an}的前n項和為Sn,滿足,且a1,a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等差數(shù)列中,.
(1)求的通項公式;
(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013·安徽高考)設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013•浙江)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線,直線過拋物線的焦點,交軸于點.

(1)求證:
(2)過作拋物線的切線,切點為(異于原點),
(ⅰ)是否恒成等差數(shù)列,請說明理由;
(ⅱ)重心的軌跡是什么圖形,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下列命題正確的是 (  )
①若數(shù)列是等差數(shù)列,且
;
②若是等差數(shù)列的前項的和,則成等差數(shù)列;
③若是等比數(shù)列的前項的和,則成等比數(shù)列;
④若是等比數(shù)列的前項的和,且;(其中是非零常數(shù),),則為零.

A.①② B.②③ C.②④ D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知公差不為零的等差數(shù)列,等比數(shù)列,滿足,
(1)求數(shù)列、的通項公式;
(2)若,求數(shù)列{}的前n項和.

查看答案和解析>>

同步練習冊答案