x0不屬于函數(shù)的定義域是f(x)a(  )

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件

 

答案:D
提示:

利用極限直觀定義直接得出

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關(guān)于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

x0不屬于函數(shù)的定義域是f(x)a(  )

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:盧灣區(qū)一模 題型:解答題

將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關(guān)于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市盧灣區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標,并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標并說明理由;若不是,請說明理由.
(3)若函數(shù)的圖象關(guān)于點成中心對稱,求t的值.

查看答案和解析>>

同步練習(xí)冊答案