精英家教網 > 高中數學 > 題目詳情

【題目】拋物線C1yx2(p>0)的焦點與雙曲線C2y21的右焦點的連線交C1于第一象限的點M.C1在點M處的切線平行于C2的一條漸近線,則p( )

A. B. C. D.

【答案】D

【解析】

試題分析:由已知可求得拋物線的焦點F坐標及雙曲線的右焦點F1的坐標,從而就可寫出直線FF1的方程,聯立直線方程與拋物線的方程可求得點M的橫坐標,從而由導數的幾何意義可用p在點M處的切線的斜率表示出來,令其等于雙曲線漸近線的斜率從而可解出p的值.

因為拋物線 的焦點F0), 雙曲線的右焦點F120),漸近線方程為;

所以直線FF1的方程為:代入并化簡得

,

解得

由于點M在第一象限,所以點M的橫坐標為:,

從而在點處的切線的斜率=

解得:;

故選D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】圓錐的軸截面SAB是邊長為2的等邊三角形,O為底面中心,M為SO的中點,動點P在圓錐底面內(包括圓周).若AM⊥MP,則P點形成的軌跡的長度為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

,求函數的單調區(qū)間;

若函數的圖象在點處的切線的傾斜角為,對于任意的,函數在區(qū)間上總不是單調函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代名著《九章算術》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤.斬末一尺,重二斤.”意思是:“現有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構成等差數列.”則下列說法錯誤的是(
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對值為0.5斤

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某化工廠生產甲、乙兩種肥料,生產1車皮甲種肥料能獲得利潤10000元,需要的主要原料是磷酸鹽4噸,硝酸鹽8噸;生產1車皮乙種肥料能獲得利潤5000元,需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現庫存有磷酸鹽10噸,硝酸鹽66噸,在此基礎上生產這兩種肥料.問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,曲線C1:ρsin2θ=4cosθ.以極點為坐標原點,極軸為x軸正半軸建立直角坐標系xOy,曲線C2的參數方程為: ,(θ∈[﹣ , ]),曲線C: (t為參數).
(Ⅰ)求C1的直角坐標方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點Q,求|AQ|﹣|BQ|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是各項均為正數的等差數列,其中a1=1,且a2、a4、a6+2成等比數列;數列{bn}的前n項和為Sn , 滿足2Sn+bn=1
(1)求數列{an}、{bn}的通項公式;
(2)如果cn=anbn , 設數列{cn}的前n項和為Tn , 求證:Tn<Sn+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=(
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)若對于恒成立,求實數的取值范圍

(2)若對于,恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案