已知向量
=(1,1,t),
=(-1,0,2),且
⊥(
+
),則實數(shù)t的值是
.
考點:向量的數(shù)量積判斷向量的共線與垂直
專題:空間向量及應(yīng)用
分析:由
⊥(
+
),可得
•(
+
)=
•+
2=0,解出即可.
解答:
解:∵向量
=(1,1,t),
=(-1,0,2),
∴
•=-1+2t,
2=5.
∵
⊥(
+
),
∴
•(
+
)=
•+
2=-1+2t+5=0,
解得t=-2.
故答案為:-2.
點評:本題考查了向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
計算[(-3)
2]
-(-10)
0+log
2的值是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
一個長方體的長、寬、高之比是1:2:3,全面積為88cm
2,則它的體積是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)滿足3f(x)-f(
)=2x-1,則f(x)=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
是偶函數(shù),若方程f(x)-t=0有四個不同的實數(shù)解,則實數(shù)t的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
指數(shù)函數(shù)①f(x)=mx,②g(x)=nx滿足不等式0<m<n<1,則它們的圖象是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
下列命題中是真命題的是( 。
A、?α、β∈R,均有cos(α+β)=cosα-cosβ |
B、若f(x)=cos(2x-φ)為奇函數(shù),則φ=kπ,k∈Z |
C、命題“p”為真命題,命題“q”為假命題,則命題“¬p∨q”為假命題 |
D、x=0是函數(shù)f(x)=x3-2的極值點 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
等差數(shù)列{an}的前n項和為Sn,已知S10=0,S15=25,則nSn的最小值為( 。
查看答案和解析>>