【題目】已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.

(1)證明:平面BCN⊥平面C1NB1;

(2)求二面角C-NB1-C1的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)建立空間直角坐標(biāo)系,根據(jù)坐標(biāo)運(yùn)算,求得直線與平面的垂直,進(jìn)而判斷平面與平面的垂直。

(2)根據(jù)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,進(jìn)而利用兩個(gè)平面的法向量求出兩個(gè)平面的二面角大小。

(1)證明∵該幾何體的正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形,BA,BC,BB1兩兩垂直.

分別作為x,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,

B(0,0,0),N(4,4,0),B1(0,8,0),C1(0,8,4),C(0,0,4),=-16+16+0=0,=0,

NBNB1,NBB1C1.

NB1B1C1相交于B1,NB⊥平面C1NB1.

NB平面BCN.

∴平面BCN⊥平面C1NB1.

(2)解設(shè)n=(x,y,z)是平面NCB1的一個(gè)法向量,=(4,4,-4),=(4,-4,0),

x=1,n=(1,1,2).

(1)=(4,4,0)是平面C1B1N的一個(gè)法向量,

cos<n,>=.

故二面角C-NB1-C1的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,E是棱BC的中點(diǎn),試在棱CC1上求一點(diǎn)P,使得平面A1B1P⊥平面C1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上.過(guò)點(diǎn)E作EF∥BC交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.

(1)求證:EF⊥PB.

(2)試問(wèn):當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角PFCB的平面角的余弦值是否為定值?若是,求出其定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于概率和統(tǒng)計(jì)的幾種說(shuō)法:

10名工人某天生產(chǎn)同一種零件,生產(chǎn)的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則a,b,c的大小關(guān)系為cab;

②樣本4,2,1,0,-2的標(biāo)準(zhǔn)差是2;

③在面積為S的△ABC內(nèi)任選一點(diǎn)P,則隨機(jī)事件“△PBC的面積小于”的概率為;

④從寫有0,1,2,,9的十張卡片中,有放回地每次抽一張,連抽兩次,則兩張卡片上的數(shù)字各不相同的概率是.

其中正確說(shuō)法的序號(hào)有________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 ,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過(guò)點(diǎn)F1作直線PF1的垂線l1 , 過(guò)點(diǎn)F2作直線PF2的垂線l2
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l1 , l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b為異面直線,且所成的角為70°,過(guò)空間一點(diǎn)作直線l,直線l與a,b均異面,且所成的角均為50°,則滿足條件的直線共有( ) 條

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

如圖1,在三棱錐PABC中,PA⊥平面ABC,AC⊥BCD為側(cè)棱PC上一點(diǎn),它的正()視圖和側(cè)()視圖如圖2所示.

(1) 證明:AD⊥平面PBC;

(2) ∠ACB的平分線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),,動(dòng)點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)為軌跡上異于原點(diǎn)的兩點(diǎn),且

①若為常數(shù),求證:直線過(guò)定點(diǎn);

②求軌跡上任意一點(diǎn)到①中的點(diǎn)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①當(dāng)時(shí),有;

②若是銳角三角形,則;

③已知是等差數(shù)列的前項(xiàng)和,若,則;

④函數(shù)的圖像關(guān)于直線對(duì)稱;

⑤當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為.

其中正確命題的序號(hào)為___________

查看答案和解析>>

同步練習(xí)冊(cè)答案