【題目】已知的內(nèi)角,,的對(duì)邊分別為,,,.設(shè)為線段上一點(diǎn),,有下列條件:
①;②;③.
請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.
【答案】;的面積為1
【解析】
若選①②,則,,根據(jù)余弦定理即可求出,結(jié)合等腰三角形的性質(zhì)和三角形的內(nèi)角和得出,再根據(jù)正弦定理求出,通過三角形內(nèi)角和關(guān)系求得,則,最后利用三角形面積公式即可求出的面積;
若選②③,,,,可求得,根據(jù)余弦定理即可求出,三角形的內(nèi)角和得出,再根據(jù)正弦定理求出,通過三角形內(nèi)角和關(guān)系求得,則,最后利用三角形面積公式即可求出的面積;
若選①③,則,,由余弦定理可求出,由,結(jié)合等腰三角形的性質(zhì)和三角形的內(nèi)角和得出,由三角形內(nèi)角和關(guān)系得出,再根據(jù)正弦定理求出,通過三角形內(nèi)角和關(guān)系求得,則,最后利用三角形面積公式即可求出的面積.
(解法一)選①②,則,,
由余弦定理可得:,
又,∴,
∴,
在中,由正弦定理可得,
∵,∴,
又,∴,
∴,,
則在中,,
∴,
∴.
(解法二)選②③,∵,,,
∴,
由余弦定理可得:,
又,∴,
∴,∴,
在中,由正弦定理可得,
∵,∴.
又,∴,
∴,,
則在中,,
∴,
∴.
(解法三)選①③,則,,
則:,
由余弦定理可得:,
又,∴,
∵,∴,
∴,
在中,由正弦定理可得,
∵,∴,
又,∴,
∴,,
則在中,,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,點(diǎn)M是棱PD的中點(diǎn).
(1)求二面角M—AC—D的余弦值;
(2)點(diǎn)N是棱PC上的點(diǎn),已知直線MN與平面ABCD所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點(diǎn),點(diǎn)為橢圓上的一動(dòng)點(diǎn),面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,點(diǎn),證明:直線與直線關(guān)于軸對(duì)稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:過點(diǎn),橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,設(shè)直線與圓相切與點(diǎn),與橢圓相切于點(diǎn),當(dāng)為何值時(shí),線段長度最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:(),圓:(),拋物線上的點(diǎn)到其準(zhǔn)線的距離的最小值為.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)如圖,點(diǎn)是拋物線在第一象限內(nèi)一點(diǎn),過點(diǎn)P作圓的兩條切線分別交拋物線于點(diǎn)A,B(A,B異于點(diǎn)P),問是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任取一個(gè)自然數(shù),如果它是偶數(shù),我們就把它除以2,如果它是奇數(shù),我們就把它乘3再加上1,在這樣的變換下,我們就得到一個(gè)新的自然數(shù).如果反復(fù)使用這個(gè)變換,我們就會(huì)得到一串自然數(shù),最終我們都會(huì)陷在4→2→1這個(gè)循環(huán)中,這就是世界數(shù)學(xué)名題“3x+1問題”.如圖所示的程序框圖的算法思路源于此,執(zhí)行該程序框圖,若N=6,則輸出的i=( )
A.6B.7C.8D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊,且.
(1)求B;
(2)若b=2,且sinA,sinB,sinC成等差數(shù)列,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線:(為參數(shù)),曲線:(為參數(shù)),且,點(diǎn)P為曲線與的公共點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動(dòng)點(diǎn)P到直線l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com